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Module 1.4: Intersecting Two Lines, Part One

This module will explain to you several common methods used for intersecting two lines. By
this, we mean finding the point (x, y) at which two lines cross one another in the coordinate
plane.

Lines are actually graphical representations of linear equations in two variables—often
written in the form y = mx + b—so what you will really be learning is how to solve
systems of two linear equations by computing the (x, y) values that make both equations
simultaneously true.

In the coordinate plane shown here, I have plotted two
linear equations of the form y = mx + b, where m and
b are constants. The solid blue line maps the equation
y
1

= 4x+ 1, while the dashed red line maps the equation
y
2

= �4x+ 9.
If I were curious about where these two lines intersect

on the plane, I could find the point at which they cross,
which appears to lie directly on the gridline for x = 1,
and exactly between the gridlines y = 4 and y = 6. I
would speculate that the intersection between the two lines
occurs at the solitary coordinate (1, 5).

To test my possible solution, I plug x = 1 into the
linear equations, and hope to arrive at y = 5 for both.

y
1

= 4(1) + 1 y
2

= �4(1) + 9

y
1

= 4 + 1 y
2

= �4 + 9

y
1

= 5 y
2

= 5

(yes!) (yes!)

This result tells me that at x = 1, both lines pass through
the line y = 5. Therefore, the two lines intersect one an-
other at—and only at—the coordinate (1, 5).

Examining a graph, as we just did, is certainly useful when
one wants to approximate the intersection of two lines.
However, this method is not reliable for finding exact so-
lutions (which is what we desire) when the linear equations
intersect at decimal-valued coordinates.

For example, the lines y
1

= 0.6x�3 and y
2

= 3x�0.2
intersect at the (x, y) coordinate (� 7

6

,�3.7). This is not
a point that one can derive by simply “eyeballing” the
graph, especially when gridlines are sparse or nonexistent.
And “guessing-and-checking” various approximations to
the true (x, y) solution is neither an e�cient nor useful
expenditure of your time, so it will be strictly avoided.
Rather, this module will cover purely algebraic methods
for intersecting two lines, which guarantee exact solutions
every time (if solutions exist). Nonetheless, an occasional
graph can help with visualizing a particular situation.
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A Pause for Reflection. . .
If I include a graph in the remainder of this module, it is only to illustrate some mathematical
theory related to the behavior between lines on a plane. Any solutions we obtain throughout
this module will be the result of computation with reliable algebraic methods. We will utilize
the unbiased rules of algebra, and not rely on our fallible eyesight, so we can be certain that
our solutions to the following examples will be 100% accurate the first time around.

A single line on the plane is a graphical representation of
the linear equation y = mx+ b, where m is the slope (rate
of change) of the line and b is the y-value at which the
line intersects the y-axis. The line graphed to the left is
y = 2.5x+ 1.

Any “solution” to a two-variable linear equation is an
(x, y) coordinate pair that, when plugged into the original
equation, yields a true mathematical expression. For ex-
ample, an obvious solution point is the coordinate (0, 1):
if you plug x = 0 and y = 1 into the equation, you obtain
the true statement 1 = 1.

# 1-4-1

Can you tell whether a coordinate pair lies on a particular line? For each bullet, state
whether the given (x, y) pair is a solution to the corresponding linear equation. Note the
various ways to express your answer.

• Is ( 3
2

, 8.5) a solution to y = 7x� 2?

[Answer: Yes, that pair is a solution to the linear equation.]

• Does (45, 750) lie on y = �20x+ 180?

[Answer: No, that point does not lie on the line.]

• Does the line y = 5x+ 20 contain the point (�4, 0)?

[Answer: Yes, the line contains that point.]

• Is the coordinate (�4,� 8

3

) on the line y = � 5

3

x� 9?

[Answer: No, that coordinate is outside the line.]

It is misleading, however, to ask for “a solution” to a single linear equation in two variables.
A line is composed of an infinite number of points, thus there are an infinite number of
solutions. Furthermore, the equation for the line is itself a compact expression of the
complete collection of solutions—for any x-value you plug in, you can find its corresponding
y-value on the line, and thus have a solution point.
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To illustrate the above ‘Danger!’ box, I have plotted the
line y = 2.5x + 1 and highlighted a number of individ-
ual points that lie on the line. Any of these coordinate
points can be plugged into the linear equation to produce
a mathematical truth. In fact, every point on this line—of
which there are infinitely many—is a solution to the linear
equation. This is the case for any single equation of the
form y = mx+ b.

A more interesting endeavor is discovering the solution to
a system of linear equations.

A system of linear equations is a collection of two
or more linear equations which you must simultaneously
solve. It can be represented as two or more lines on the
coordinate plane. Except for two rare situations (which we
will discuss very shortly), a pair of lines will intersect at
exactly one coordinate point. Plugging this pair of (x, y)-
values into either of the individual equations will yield a
true mathematical expression.

The graph on the left plots the linear system

(

y = x+ 1

y = �2x+ 6

The lines intersect—or, the system is solved—at the (x, y)
coordinate ( 5

3

, 8

3

). We will check this solution in the next
box. In a couple of pages, you will learn how to determine
the solution to a linear system yourself.

You should check that the point ( 5
3

, 8

3

) does in fact represent the solution to the above
linear system. To do this, plug the x- and y-values into both equations and see that a true
expression is produced from both.

y = x+ 1 y = �2x+ 6
8

3

= 5

3

+ 1 8

3

= �2
�

5

3

�

+ 6
8

3

= 5

3

+ 3

3

8

3

= � 10

3

+ 18

3

8

3

= 8

3

8

3

= 8

3

(yes!) (yes!)

As you can see, plugging the coordinate point into each original equation produced the true,
trivial statement 8

3

= 8

3

. This confirms that the point ( 5
3

, 8

3

) is the intersection point of the
two lines.
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Assume you are given a system of linear equations and a coordinate pair (x, y). To determine
whether the coordinate is a solution to the system, you must plug the x- and y- values into
both linear equations and check that a true mathematical expression follows from each. This
will confirm that the two lines intersect at that coordinate. If only one, or neither, of the
equations produces a true expression from the variable substitution, then the coordinate
pair (x, y) is not a solution to the system.

# 1-4-2

Consider the linear system

(

y = �x+ 10

y = 1.5x� 10

Is the coordinate pair (8, 2) a solution to the system? To find out, you must plug the
potential solution into both equations of the system.

y = �x+ 10 y = 1.5x� 10

(2) = �(8) + 10 (2) = 1.5(8)� 10

2 = �8 + 10 2 = 12� 10

2 = 2 2 = 2

(yes!) (yes!)

Both resulting expressions are true, which assures us that the point (8, 2) is a solution. The
fact that both true expressions are 2 = 2 is a consequence of the linear equations being
identically set up in the form y = mx+ b.

# 1-4-3

For each bullet, determine whether the given coordinate pair solves the linear system.

• Does (�1,�5) solve the system

(

y = 3x� 2

y = �x� 6
?

[Answer: Yes, this is the solution to the system.]

• Does (4, 1) solve the system

(

y = �2x+ 9

y = 3x� 16
?

[Answer: No, this is not the solution to the system.]

• Note, we really did have to check both equations in the second bullet, because
y = �2x + 9 was satisfied while y = 3x � 16 was not satisfied. Since both equa-
tions must be satisfied, we reject (4, 1) as a solution to the system.
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# 1-4-4

Four boxes ago I presented the system of linear equations

(

y = x+ 1

y = �2x+ 6

It is in our interest to allow the equations in the system to interact with one another.
Since we are looking for only one (x, y)-pair that solves the system, then the y-values must
be equal.

Using this knowledge, we can rewrite the system as x + 1 = y = �2x + 6. Now, since
x+1 equals y and �2x+6 also equals y, then it must be the case that x+1 equals �2x+6.
Thus, we can write the equation x+1 = �2x+6. We solve this one-variable linear equation
to obtain the x-value of our solution to the original system.

We will proceed with solving this linear system in the next box.

# 1-4-5

We now have a linear equation in one variable, x+ 1 = �2x+ 6. We can solve that easily,
as follows:

x+ 1 = �2x+ 6

x+ 2x = 6� 1

3x = 5

x = 5

3

We obtain the non-trivial expression x = 5

3

, which tells us that the two lines from the system
of equations intersect at x = 5

3

. Next, to find the y-value of the point of intersection, we
plug x = 5

3

into one of the equations from the original system.

y =
�

5

3

�

+ 1

y = 8

3

The substitution of x = 5

3

yielded y = 8

3

. In other words, the two lines y = x + 1 and
y = �2x+ 6 intersect at the point

�

5

3

, 8

3

�

.

Checking the solution to a linear system is a matter of determining whether the lines share
the same y-value at a particular x-value. In the previous box, we plugged our known x-value
into one of the equations to find the corresponding y-value. To check your work, it is best
practice to then plug the x-value into the other equation in the system, to see whether the
same y-value is produced. If the resulting y-value is a match, then congratulations!—you
have found the complete solution to your system.

Let’s check that
�

5

3

, 8

3

�

is a solution to the system by plugging x = 5

3

into y = �2x+6:

y = �2
�

5

3

�

+ 6

y = � 10

3

+ 18

3

y = 8

3

Since we also obtained y = 8

3

by plugging into y = x+1, we know that the two lines intersect
at x = 5

3

. Our solution is now confirmed.
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In general, when solving a system of linear equations where one variable is known, you need
only plug that value into one of the two original equations to find the other variable. Then
you can check your work by plugging the solution point into the unused equation to see
whether a true expression results.

# 1-4-6

Let’s try solving another system of linear equations. This time our system is

(

y = 4x� 9

y = 6� x

If a solution exists, the y’s in both equations should be equal. Thus, we can collapse the
system into a linear equation in x only and solve for x:

4x� 9 = 6� x

4x+ x = 6 + 9

5x = 15

x = 3

Having obtained x = 3, we then plug this value back into one of the two original equations
to determine the corresponding y-value. Let’s arbitrarily choose the first equation:

y = 4(3)� 9

y = 12� 9

y = 3

Now we have a potential solution point for our system, (3, 3).

To confirm that the coordinate (3, 3) describes the intersection of the two lines in the above
example, we plug the solution into the other, untested linear equation to check that a true
mathematical expression is produced:

y = 6� x

(3) = 6� (3)

3 = 3

(yes!)

The validity of the resulting expression 3 = 3 confirms that the second line contains the
point (3, 3), which we found to also be contained within the first line. Therefore, the two
lines do intersect at (3, 3).
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# 1-4-7

Find the point where the following two lines intersect:

(

y = 0.2x� 24

y = �0.5x+ 11

[Answer: The two lines intersect at the point (50,�14).]

# 1-4-8

Find the point where the following two lines intersect:

(

y = 41x+ 58

y = �17x+ 29

[Answer: The two lines intersect at the point (�0.5, 37.5).]

# 1-4-9

Find the solution to the linear system:

(

y = �33x� 4

y = 21x� 10

[Answer: The approximate solution to the linear system is x = 0.111, y = �7.666.]

# 1-4-10

Find the solution to the system of linear equations:

(

y = 5x� 30

y = �3x+ 23

[Answer: The system is solved when x = 6.625 and y = 3.125.]

When we are given a system of linear equations, we first assume that a solution exists for
the system. That is, we expect the lines expressed by the linear equations to intersect
somewhere in the coordinate plane. Working from that assumption, we first try to find
the value of one of the variables (so far we have found x first, but that need not be the
case, as you will discover shortly). If a solution exists for the first variable, this confirms
our assumption that the lines intersect. What we are about to show is that if the variable
disappears while solving, we must concede that the lines either do not intersect or are not
unique; in either of these peculiar scenarios, there is no single solution to the system.
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So far, you have only seen systems of linear equations for which a single solution exists. However, I have mentioned
the caveat that a solution may not exist for some systems. In fact, there is a third scenario—that there are an infinite
number of solutions to a system of linear equations. We will now explore all three scenarios in detail.

Scenario One (Common): Single Solution

A system of two linear equations in standard form is

(

y
1

= m
1

x
1

+ b
1

y
2

= m
2

x
2

+ b
2

where m is the slope and b is the y-intercept of a line. If,
for a system in standard form, m

1

6= m
2

(the slopes are
di↵erent), the system will have one unique solution. The
graphical representation of the system will be two lines
crossing one another at exactly one point on the plane.

The graph on the left plots the system of equations

(

y = 2x� 3

y = �2x+ 1

where it is clear that the lines have di↵erent slopes. Thus
we would expect an intersection at only one point in the
plane.

When a system of linear equations has exactly one
solution, it is called an independent system.

Scenario Two (Rare): No Solutions

See the model of a linear system in standard form, shown
above. When m

1

= m
2

but b
1

6= b
2

, the system has no
points of intersection (no solutions). This is because the
lines are parallel but disjoint, running along forever in both
directions without ever crossing.

Think of it this way: the lines have the same slope, but
they cross the y-axis at di↵erent heights. Thus as you shift
horizontally over the coordinate plane, both lines increase
or decrease at the same rate; they are always separated
vertically by the di↵erence between b

1

and b
2

.
The graph on the left plots the system of equations

(

y = 2x� 3

y = 2x� 1
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Looking at the previous box, we can see that the slopes of the lines match, but the y-
intercepts do not. To be hyper-specific, the y-coordinate of any point on the blue solid
line, for any particular value of x, will always be two less than the y-coordinate of the
corresponding point on the red dashed line, for that same value of x. Therefore, this system
has no solution.

When a system of linear equations has no solution, it is called an inconsistent system. If
a system of linear equations is presented to you in standard form, it should be very apparent
whether the lines are parallel or intersecting; simply compare the lines’ slopes. However,
there is another tell-tale sign that a system has no solutions: when solving for the first
unknown variable, a nonsensical expression results rather than a true algebraic assignment.
We will see an example of this in the next box.

# 1-4-11

Consider the system of linear equations

(

y = 7x� 5

y = 7x+ 2

Since the slopes of the lines are equal but their y-intercepts are not, we can automatically
deduce that the lines are parallel and thus do not intersect. However, let’s collapse this
system into a one-variable linear equation and see what we get when we try to solve it.

7x� 5
?

= 7x+ 2

7x� 7x
?

= 5 + 2

0 = 7

Our result 0 = 7 is certainly false. And where did the variable x go? These errors arose for
one reason only: we were trying to solve for an inconsistent system. We can conclude that
the system has no solution.

# 1-4-12

Determine the number of solutions for each linear system. Then classify each system.

•
(

y = 4x� 3

y = 2 + 4x
[Answer: The system has no solutions. It is an inconsistent system.]

•
(

y = �5� x

y = x� 10
[Answer: The system has one solution. It is an independent system.]

If I asked you to compare the two linear equations y = 5x+4 and y = 5x+4, you’d probably
give me a sideways glance and tell me that “they are the same line, obviously.” But what
about y = 5x + 4 and 4y = 20x + 16? Does it surprise you that these also describe the
same exact line—that if you graphed these two linear equations on the coordinate plane,
they would overlap perfectly?

Linear equations are, first and foremost, equations. And equations can be manipulated,
including being scaled (multiplied) by a non-zero constant term. Notice that 4y = 20x+16
is just y = 5x+4 with each of its terms multiplied by 4. Although the coe�cients are larger,
the linear relationship between y and x is preserved, which is what matters.

In short, if you can scale a linear equation—multiplying through by a constant term—so
that it matches another linear equation, then the two equations are actually equivalent as
objects (lines) on the coordinate plane.
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Scenario Three (Rare): Infinitely Many Solutions

If, in a system of linear equations, one equation is a con-
stant multiple of the other, then the two equations actually
describe the same line. When graphed on the coordinate
plane, the two lines will overlap one another.

That the lines overlap everywhere on the plane is an-
other way of saying they intersect at all points. Therefore,
a system of linear equations in which one equation is a
constant multiple of the other has an infinite number of
solutions: every point on either line is a solution to the
system.

The graph to the left plots the system of equations

(

y = 2x� 3

3y = 6x� 9

We can see that the second equation is a multiple of the
first (by a factor of 3), and that their corresponding lines
overlap completely. Every point on the line y = 2x � 3 is
a solution to the the system.

When a system of linear equations has an infinite num-
ber of solutions, it is called a dependent system.

# 1-4-13

Find the point of intersection between the two lines described by the following equation:

(

2.5y = 5x� 12.5

1.5y = 3x� 7.5

First, I will get both equations into standard form, so that I can compare them. The top
equation can be divided by 2.5, and the bottom equation can be divided by 1.5. I should
reiterate that scaling an equation—either larger or smaller—does not alter the relationship
between y and x in that equation.

After scaling, the system of equations is rewritten as

(

y = 2x� 5

y = 2x� 5

However, we can now see that these are the same line. Therefore, any point on the line
y = 2x � 5 is a solution to the system. The system has an infinite number of solutions,
represented by the linear equation y = 2x� 5.

You might now be tired of solving systems of two linear equations. However, we will see many word problems that are
solved by these types of equations in Sections... , so it is beneficial to practice this skill just a little more.
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# 1-4-14

Solve the following system of linear equations, and then describe the system using one of
the three scenarios introduced above:

(

y = 3.5� 3.3x

y = �3.3x+ 3.3

[Answer: The system has no solutions, and therefore is an inconsistent system.]

# 1-4-15

Solve the following system of linear equations, and then describe the system using one of
the three scenarios introduced above:

(

y = 1.3x+ 30

y = � 1

2

x+ 18

[Answer: The solution to this system is x = �6.66, y = 21.33. This system is independent.]

# 1-4-16

Solve the following system of linear equations, and then describe the system using one of
the three scenarios introduced above:

(

y = 100x+ 25

y = 25 + 100x

[Answer: This system has an infinite number of solutions, and is therefore dependent.]

So far you have only seen linear systems in which both equations were already in standard
form. When this is the case, solving is only a matter of setting the polynomials in x equal
to one another, solving for x, then using x to solve for y.

What if a system of equations is not presented in standard form? What if you were
asked, for example, to find the intersection of 10 = 3x�9y and �2x = 5+ 4

5

y? Luckily, there
are two very popular algebraic methods available to solve systems where the equations are
not in standard form; they are called the Substitution Method and the Elimination Method.
The next module will focus on teaching you these methods, so that you can most e�ciently
solve any system of linear equations, no matter how complexly they are setup.
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In this module we reviewed:

• how a system of linear equations in two variables represents a set of lines in the
coordinate plane.

• the notion of a “solution” to a system of linear equations, and how it represents the
point at which the lines cross in the plane.

• a simple method for solving systems of linear equations—or finding where two lines
intersect—when the equations are in standard form.

• the characteristics of independent, inconsistent, and dependent linear systems.

• the idiosyncrasies that arise when trying to find solutions for an inconsistent or
dependent system.

• the following vocabulary terms: system of linear equations, independent system, in-
consistent system, dependent system.
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