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1 How to Use This Document

In Modules 7.7, 7.8, and 7.9, we learned the seven principles of combinatorics.
They are the multiplication principle (sometimes called the restaurant princi-
ple), the exponent principle, the permutation principle, the complement prin-
ciple, the factorial principle, the combinations principle, and the handshake
principle. While these tools are easy to use, the tough part is picking the right
tool for the right problem. In this worksheet, you have 24 problems including
hints and complete solutions. By working through what follows, you will grow
accustomed to these tools, and know when to use them.

Section 2 will review the two fundamental questions, and remind you of
the 2 x 2 chart which explains the relationship of our basic principles to those
two questions. Section 3 presents a quirky but very pragmatic example from
reliability engineering. It can be solved by two different methods, and of course,
each method gives the same answer. Section 5 has the questions themselves.
Section 6 gives a hint that represents the first half of the solution. Section 8
gives the rest of the solution—so you will always want to read the hint first,
otherwise the answer won’t make sense. Between them, Section 7 discusses how
to compute the answer for problems that lie in the rare “fourth case.”

2 The Fundamental Questions and the Chart

By now, you're aware that the two fundamental questions in a combinatorics

question are “does order matter?” and “are repeats allowed?” Then, using the

answers from those two questions, we can choose which principle we should be

using.

Repeats Allowed | Repeats not Allowed
Order Does Matter | Exponent Princ | Permutation Princ

Order Doesn’t Matter | The Fourth Case | Combinations Princ

While I have your attention, it is good to remind you of the factorial prin-
ciple: “There are n! possible orderings of n objects.” Also, the handshake
principle is just the combinations principle, with the second number stuck at 2.



Over all, the table above can be used to solve almost all combinatorial prob-
lems. While the “fourth case” is rare, we will talk about that in Section 7 of
this document.

Be warned, however, that sometimes none of the shortcut principles apply.
In these cases, we fall back on the multiplication principle, and slowly work out
the problem. Also, in some cases, more than one principle could work. This
is weird, but when it happens, both principles must produce the same answer.
We'll see an example of that now.

3 A Quirky Example

Suppose that a particular quad-core game console requires 4 microprocessors.
The boss has recently switched vendors, and the newer (cheaper) vendor claims
96% of processors, or more, are functional. The boss doesn’t understand what
this means and how bad that really is.

In any case, in the latest shipment of 60 processors, 58 were functional, but
2 were non-functional. That’s 96.66% functional, so the vendor hasn’t broken
their promise. Unfortunately, it is not possible to detect a faulty microprocessor
prior to building the console. Moreover, a console needs all four processors to
be working if it is to function at all. If the microprocessors are picked from the
batch at random, what is the probability that the console will work?

Clearly, repeats are not allowed, because while I can pick processors #26,
#39, #12, and #41, I cannot pick #26, #39, #26, and #41—processor #26
cannot occupy two slots on the motherboard simultaneously. What is interesting
is that we have no idea if order matters, or not. For example, consider a tray
that will carry the microprocessors from the vendor’s shipping package to the
bench, where the console will be assembled. If we have a tray with numbered
positions, indicating the 1st, 2nd, 3rd, and 4th processors chosen, then order
matters. Alternatively, if the tray is just blank and empty, and we put the four
processors on them to be carried to assembly, then order doesn’t matter.

While this might seem remarkably inconvenient, we know that the same
answer must come out each way, because the question “will this console be
functional or not” is unambiguous. What is ambiguous is if we take the road
toward that destination of “order matters,” and use the permutations principle,
or the road toward that destination of “order doesn’t matter,” and use the
combinations principle. We should get the same final answer either way.

If order does matter, the probability is

Pss.a 10,182,480

= = 0.870056 - - -
Pso,a 11,703,240
which can be compared to
Ossa _ 424,270 _ ) cr0056. .

Ceo4 487,635

when order doesn’t matter.



Furthermore, using the complement principle, we can compute that the prob-
ability of a non-working console is

1 —0.870056 - -- = 0.129943 - - -

which is far too high. Surely a company cannot survive if more than 10% of
their products are defective! Even 5% is too high.

There are two “take-away” lessons here. First, having components with a
96% reliability rate is simply awful. The reliability of the components should
be far above 99% to ensure a reasonably low percentage of defective products.
Second, there can be multiple roads to the solution of a combinatorial problem.
Do not be alarmed if you and a study partner take different routes to the
answer—that’s okay. What matters is that you achieve the correct answer.

4 The Questions

1. Let’s imagine that you’re working for a company making a new handheld-
gaming gadget. There are eight possible attachments to choose from. The
economy package contains the gadget with one attachment, the standard
package contains the gadget with two attachments, and the deluxe pack-
age contains three attachments. For this particular device, it does not
make sense to get the same attachment more than once. Moreover, the
warehouse manager has decided to allocate time to pre-assembling and
pre-sorting these gadget packages, to be ready for the holiday season.
How many bins will be required, knowing that we need one bin for each
possible package?

2. Suppose that on a 16-channel wifi network, each device will select a ran-
dom channel when rebooted. Interference will occur if two devices select
the same channel, by coincidence. If there are 7 devices on the network,
what is the probability that interference will occur after a reboot?

3. Suppose a friend of yours works for a mutual fund. His job is to contribute
to the decision-making process of which stocks to buy and sell. Yet, your
friend’s grandmother doesn’t understand why this is a very hard task.
Each of the analysts will respond with a 1st choice, 2nd choice, 3rd choice,
4th choice, and 5th choice of stock, and this fund focuses on the 500 stocks
that are a member of the S&P500 index. To help grandma understand
that this really is complicated, tell me how many possible preference lists
could each analyst respond with?

4. When analyzing a large, multivariate data set, we can compute the corre-
lation coefficient of any two variables. Therefore, there is one correlation
coefficient computed for every possible pair of variables. If there are 40
variables in some data set, how many correlation coefficients do we obtain?
In another data set, if we obtained 5671 correlation coefficients, how many
variables were there?
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Imagine that I’'m packing for a business trip of eight days. I need to bring
8 shirts. They can be button downs, polos, or t-shirts. Of course, to blend
in, if I'm going to California I should rely mostly on t-shirts, otherwise they
might think me to be too conservative and stuffy. If I'm going to London
or Paris, I definitely should use button downs, otherwise they might think
me amateurish or very young. These two plans can be thought of as being
(0,0,8) and (8,0,0). I'd probably want some sort of mix—for example,
(2,3, 3) would represent two button downs, three polos, and three t-shirts.
Climate might cause variations too. Assuming my wardrobe is sufficiently
large, how many possible plans are there?

Imagine that an elementary school is ordering 400 locks for student lockers.
The school would like to have the combinations be without any repeated
digits, as studies have shown that this makes it easier for young people
to memorize. Somehow, this request was not communicated to the lock
company until very late in the process. Suppose that the wheels of this lock
are numbered 1-8, and that there are 3 wheels on the lock. To estimate
the proportion of the 400 locks that have to be discarded or replaced (for
not meeting the requirement), compute the probability that a random
combination of this type has a repeated digit by coincidence.

At my high school, back in the early 199os, you could choose from six
languages—Hebrew, German, Chinese, Japanese, and the old standbys,
Spanish, or French. My freshman class had 330 students in it. Looking
at enrollment structures only, how many possible enrollments could there
be? For example, it might be that 25 students choose Hebrew, 10 choose
German, 35 choose Chinese, 15 choose Japanese, 194 choose Spanish, and
51 choose French. In planning for the right numbers of classrooms and
seats, it doesn’t matter who takes what language—instead, only the total
number of students matters. How many such enrollment structures are
possible? (By the way, each student takes exactly one language—it was
forbidden to take multiple languages or to avoid foreign languages.)

. Suppose that at a small fencing meet, every fencer will play every other

fencer. If 11 fencers show up, then how many matches will be played? If
at some other gathering, 136 matches are played, and we know that every
fencer played every other fencer, then how many people showed up?

Some LCD displays use 18-bit color. How many colors are possible for
such a display? Note, each bit string represents a color, and each color
represents a bit string.

Suppose a combination lock has wheels numbered 1-8, and there are 5
wheels. How many combinations are possible for this lock? How long will
it take a thief to try all the combinations, in days, hours, minutes, and
seconds, working at a rate of 1 attempt per second?
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Imagine that at a truck repair shop, they have 200 tires, but unknown to
anyone, 4 of them are flawed. An 18-wheeler comes in to have each of its
tires replaced. What is the probability that the truck receives one or more
damaged tires? Note: you might want to make a mental “guess” before
you start, based on the idea that 98% of the tires are good, and only 2%
are flawed.

Suppose that the video-game club has 47 members. Of course, no one can
hold multiple offices. In how many ways could they select the following
four officers: president, vice-president, secretary, and treasurer?

Suppose you have an internship working for a biomedical firm that manu-
factures pacemakers. In one particular model, there are 5 capacitors that
govern the timing. Suppose that in one shipment of 100 capacitors, 97
are good but 3 are bad. What is the probability that, using capacitors
drawn at random from this sample, that a pacemaker will have entirely
good capacitors?

In how many ways can a fraternity of 24 members elect a president, vice-
president, secretary, and treasurer? No one may hold multiple offices.
After that election is over, a judicial board will be elected. The judicial
board has five seats, and officers are excluded from running for the judicial
board. In how many ways can the judicial board be selected?

A company has protected some proprietary files with the Data Encryption
Standard (DES). That cipher uses a 56-bit secret key. How many possible
keys are there? If a cryptanalyst’s mini-supercomputer has 64 cores, and
each core can try twenty million secret keys per second, how long will it
take to guess and check all possible secret keys? Use a 365-day year, and
respond in years, days, hours, and minutes.

Looking again at the previous problem, we can consider the weight of a
binary string. The weight is the number of 1s. For example, a 56-bit
secret key that is all Os has weight zero. If it has all Os except for one 1,
then it has weight 1. If it is half-and-half, it has weight 28. If it has only
three Os, it has weight 53. In any case, how many possible weights are
there for a 56-bit secret key?

Suppose that six members of the state legislature are invited to speak
at graduation, and that there are three democrats and three republi-
cans among them. As it turns out, when they speak, they alternated
party. How many possible schedules would achieve that alternation? If
the speakers spoke in random order, then what is the probability that the
alternating of the political parties occurred by accident?

Let’s suppose that there is a jury trial in New York City, with a 12-
person jury. This jury was selected from a pool of 40 potential jurors—25
of whom are from Queens, and 15 of whom are from Brooklyn. The
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defendant happens to be from Brooklyn, and he is alarmed that all the
jurors happen to be from Queens. In order to figure out whether or not
to file a motion about this matter, the defense attorney wants to compute
the probability that all the jurors would be from Queens by coincidence,
if the jury had been selected randomly. After all, a majority of the pool
was from Queens, and a minority of the pool was from Brooklyn. What
is this probability?

There is a certain style of elections in situations with many candidates,
called “Instant Run-off Voting.” In an IRV election, each voter is presented
with a list of candidates. They must rank each candidate, indicating who
is their first choice, second choice, third choice, fourth choice, and so forth.
For example, in an election with 12 candidates, voters might be asked to
place the numbers 1, 2, 3, and 4, on the ballot, next to a list of 12 names,
indicating their first, second, third, and fourth choices. How many possible
ballots are there? How many ballots are possible if we extend the system
to include fifth and sixth choices?

Suppose an airline wants to make record-locators that are sequences of six
letters, but they wish to exclude Q, 0, I, J, U, and V. How many possible
record-locators are there? What is the probability that a random one
contains an X7

How many 4-digit numbers are there? How many 4-digit numbers are
palindromes? What is the probability that a four-digit number, selected
at random from all possible four-digit numbers, is a palindrome?

)

In Module 7.7: “The Multiplication and Exponent Principles,” we had a
problem about Canadian Postal codes. It was explained that those codes
have a letter, followed by number, a second letter, a second number, a
third letter, and finally a third number. However, it turns out that the
details are a bit more complex. As of 2015, the Postal codes do not include
the letters D, F, I, O, Q or U, and the first position also does not make use
of the letters W or Z. With this in mind, compute how many postal codes
are possible.

Suppose that on a relatively warm day at a fancy restaurant, only 5 cus-
tomers have used the coat check. Unfortunately, the attendant has no
idea who checked which coats. He hands them back randomly. What is
the probability that every customer gets their actual coat back, by coin-
cidence?

It is interesting to ask if knowing the weight of a cryptographic secret
key helps a cryptanalyst guess the key. (The weight of a bit string was
defined in Problem 16.) Suppose a cipher is using a 64-bit string as its
key. Further suppose that we know the weight to be 10. In order to assess
the usefulness of knowing the weight, we should compute how many 64-bit
strings exist in general, and how many 64-bit strings have weight 10. Then
we can see how much this new information narrows down the search.



The Hints

. We are told that it doesn’t make sense for an attachment to be repeated, so
we know that repeats are not allowed. Furthermore, since the attachments
are just being put into packages, surely order does not matter. When order
does not matter and repeats are forbidden, we know that we should use
the Combinations Principle.

. It isn’t the same thing if device 1 transmits on channel 14 and device 2
transmits on channel 5 versus device 1 transmitting on channel 5 versus
device 2 transmitting on channel 14. Therefore, order matters. We will
compute a number once, using the exponent principle, to represent that
repeats are allowed. We will compute another number using the Permu-
tation Principle, to represent no repeats.

. Surely a particular company cannot simultaneously be your 3rd choice and
your 1st choice, so repeats are forbidden. Clearly, order matters, because
saying that 3M is your 1st choice and Agilent is your 2nd choice is different
from saying Agilent is your 1st choice and 3M is your 2nd choice. Since
order matters and repeats are forbidden, we use the Permutation Principle.

. We are asked for the number of pairs. This is directly the Handshake
Principle, but that’s the Combinations Principle with the second number
glued to two. Why? Well, in a pair of variables, it does not matter in
which order I write the variables. The correlation coefficient of = and
y equals the correlation coefficient of y and x. Also, it doesn’t make
sense to pair a variable to itself, when we say “a pair of variables.” For
this reason, repeats are not allowed. (Actually, you can compute the
correlation coefficient of z and z if you wanted to, but you'd just get 1,
so nobody ever does that.) Since order doesn’t matter and repeats are
forbidden, we are using the Combinations Principle.

. Since the shirts are just going into my suitcase, and coming out at the
destination, it is very clear that order does not matter. (Of course, if
the problem had included information on what sort of shirt I need on
Monday, Tuesday, et cetera, then that would be something else entirely.)
Naturally, repeats are allowed, because I have only three types of shirts
available to me in this problem, so I couldn’t even plan for 4 days without
a repeat. Since repeats are allowed but order does not matter, this is the
rare “fourth case.”

. Order matters, because if you have the right digits but in the wrong order,
the lock will not open. We should use both the permutation principle and
the exponent principle. The permutation principle will tell us how many
there are, without the repeated digits, and the exponent principle will tell
us how many there are, with the repeated digits.
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The order does not matter here. That’s because Alice taking Spanish and
Bob taking French is the same as Bob taking Spanish and Alice taking
French, in the sense that both increment Spanish and French exactly once
each. Clearly, repeats are allowed because we have only 6 languages, so
we could not enroll even seven students without repeating a language.
Since order doesn’t matter and repeats are allowed, we are using the rare
“fourth case.”

Clearly, if Bob plays Dave or Dave plays Bob, that’s the same thing,
so order doesn’t matter. It isn’t possible for Bob to fence himself, so
repeats are not allowed. When repeats are not allowed and order doesn’t
matter, we are using the Combinations Principle. Alternatively, this is
the Handshake Principle, since each fencing match can be thought of as a
handshake.

This problem is really asking “How many 18-bit strings are there?” A
bit string is some sequence of 0Os and 1s. Clearly, repeats must be al-
lowed, because otherwise I can’t even make a 3-bit or 4-bit strings with
only two symbols—0 and 1—available to choose from. Also, order def-
initely matters. If you have 111111000000000000 that’s deep red, while
000000000000111111 is deep blue. Since order matters and repeats are
allowed, we use the Exponent Principle.

We were not told anything about repeats, so we must assume that repeats
are allowed. However, it is very clear that order matters. If my combina-
tion is 85614, and you try 56841, then you surely won’t be able to open
my lock. Since order matters and repeats are allowed, then we are using
the Exponent Principle.

This is similar to the “quirky example” explained in Section 3 of this
document.

No repeats are allowed, because no one can hold multiple offices. Order
matters, because electing Bob as President and Alice as Vice-President
is not the same thing as electing Alice as President and Bob as Vice-
President. Since order matters and repeats are forbidden, we use the
Permutation Principle.

This is similar to the “quirky example” explained in Section 3 of this
document.

We are told that no one may hold multiple offices, so we know that repeats
are prohibited. What is fascinating is that for the officers, order matters,
while for the judicial board, order does not matter. If we elect Ned-Ed-
Fred-Ted for the officer positions, we are saying that Ned is president, Ed
is vice-president, Fred is secretary, and Ted is treasurer. Contrastingly, if
we elect Ed-Fred-Ned-Ted, then we are saying that Ed is president, Fred
is vice-president, Ned is secretary, and Ted is treasurer. These are not the
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same. Yet, if you list the members of the judicial board in various orders,
the composition of the board doesn’t change. This means that we’ll use the
Permutations Principle for the officers, and the Combinations Principle for
the judicial board.

This problem is really asking “How many 56-bit strings are there?” A bit
string is some sequence of Os and 1s. Clearly, repeats must be allowed,
because otherwise I can’t even make a 3-bit or 4-bit strings with only
two symbols—0 and 1l—available to choose from. Also, order definitely
matters. Since order matters and repeats are allowed, we use the Exponent
Principle.

There are two possible approaches here. The first is just common sense.
The lowest possible weight is 0 and the highest possible weight is 56. Each
of the numbers in {0,1,2,...,54,55,56} is possible. Therefore, there are
57 possible weights.

However, to solve this problem with the principles of combinatorics, we
should realize that what we are doing is filling a binary string with 1s and
0s. When computing the weights, order does not matter. Repeats are
allowed, because we only have two symbols, 0 and 1, so we couldn’t even
fill a 3-bit string without making a repeat. Since order doesn’t matter
and repeats are allowed, we are in the rare “fourth case.” Computing the
answer this way will allow us to gain trust in the formula for the fourth
case.

For the first part, the speakers are coming from two different sets. While
I might be wrong, I do not see a straightforward way to apply the princi-
ples of combinatorics. Instead, we should fall back on the multiplication
principle. Next, we should figure out how many random schedules there
are. Since there are 6 speakers, we know there are 6! = 720 possible
orderings—that’s the factorial principle.

For a jury, order doesn’t matter. A jury is a set of people, so it doesn’t
matter if we say Alice and Bob are on the jury, or if we say that Bob and
Alice are on the jury. Moreover, the same person cannot be photocopied
or cloned to enable them to take up multiple seats on the 12-seat jury. For
this reason, clearly repeats are forbidden. When repeats are forbidden and
order doesn’t matter, we use the Combinations Principle.

Surely it does not make sense for the same candidate to be both my 2nd
choice and my 3rd choice at the same time, so repeats are forbidden. Order
matters, because saying that Fred is your 1st choice and Ned is your 2nd
choice is different from saying Ned is your 1st choice and Fred is your 2nd
choice. Since order matters and repeats are forbidden, we are using the
Permutation Principle.

Since we are not told that repeats are prohibited, we must assume that
repeats are allowed. Order matters, in the sense that if my record locator
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is PKNRZW, then that’s not the same as KRZWPN. Since order matters
and repeats are permitted, we are using the Exponent Principle. It is easier
to find the probability that a random record locator does not contain an
X, and then use the complement principle to get the probability that it
does contain an X.

This problem is solved fairly easily as a multiplication principle problem,
but I think it is fairly hard to solve it using the principles of combinatorics
directly.

Since the six spots are being drawn from two different sets (letters and
numerals), we cannot use the principles of combinatorics. Specifically,
the first, third, and fifth positions are letters, but the second, fourth,
and sixth positions are numerals. Therefore, we should fall back on the
multiplication principle and build our model carefully.

Most students would recognize this as the Factorial Principle, but it can
also be solved with the Permutations Principle. When we talk about
how many different ways to order n objects, that’s just n!. If we do not
remember this, then we would say that order matters (because giving
Alice’s coat to Charlie and Charlie’s coat to Alice is different from giving
Alice’s coat to Alice and Charlie’s coat to Charlie). You cannot give the
same coat to two different people (without cutting the coat in half) so
repeats are forbidden. Since repeats are not allowed and order matters,
this is the Permutations Principle.

First, we count the number of 64-bit strings in general. In bit strings,
we only have 0 and 1 to work with. Therefore, we must allow repeats,
otherwise we cannot even make a 3-bit string, let alone a 64-bit string.
Order definitely matters, so we use the Exponent Principle.

Second, to know how many have weight 10, what we really want to know
is how many subsets of the numbers {1,2,3,...,62,63,64}, with 10 mem-
bers, can be constructed. When we have a 10-member set, drawn from
{1,2,3,...,62,63,64}, we can consider those the “addresses” of the ones,
and all other spots are zeros. Another approach is to ask about 54-member
sets, and think of those as the “addresses” of the zeros, letting all other
entries be ones. That’s because a 64-bit string with weight 10 has 54 zeros
and 10 ones. In combinatorics, if we have two ways to do a problem, we
really should get the same answer each way.

Computing the Fourth Case

The formula for the fourth case isn’t hard. Some students choose to memorize
it and just dispense with the derivation. When selecting = items from a set of
n objects, where repeats are allowed, and order doesn’t matter, there are

Cn—i—x—l,x—l = O7L+x—1,n

10



possible choices.

My derivation, however, is one that some students like and some students
find unsatisfying. In any case, imagine a freshman class at a high school, with
1000 freshmen, and they have their choices of studying Spanish, French, Ger-
man, or Japanese. The principal isn’t worried, just yet, at figuring out which
students are taking which languages. At this moment, the principal just wants
to know about the total enrollments in each language, to help with setting the
schedule. How many possible enrollment structures are there?

Imagine that we have 3 dividers, and 1000 chairs, that we will position into
1003 slots. These will allow us to figure out how many students are in each
language. For example, let h be a chair, and let | be a divider. We’ll seat the
students in the order Spanish, French, German, and Japanese, with a divider
between each language group. Consider

hh - - b |[hhh|hh
——
995

which means 995 take Spanish, 0 take French, 3 take German, and 2 take
Japanese. Similarly
hh--- A |h|hhh|/hhh
——
993

means 993 take Spanish, 1 takes French, 3 take German, and 3 take Japanese.
Finally

hh - - A |hh|[hhhhhhh

——

991

means 991 take Spanish, 2 take French, 0 take German, and 7 take Japanese.

As you can see, each sequence of chairs and dividers makes a enrollment
structure, and each possible enrollment structure makes a sequence of chairs
and dividers. With 1000 chairs and 3 dividers, we have 1003 objects.

Interestingly, if you tell me where the 3 dividers go, I automatically know
where the 1000 chairs go, and there are Cigg3,3 ways to place the dividers.
Similarly, if you tell me where the 1000 chairs go, I automatically know where
the 3 dividers go, and there are C'go3,1000 Ways to place the chairs. Therefore,
we know that there are

C1003,3 = C1003,1000

possible enrollment structures. We get the general formula by replacing 1000
with n, 3 with £ — 1 and 1003 with n 4+ k — 1. The general formula is

Cn+k:71,k71 - Cn+k717n

7 The Answers

1. We need to use the combinations principle to find out how many one-
attachment, two-attachment, and three-attachment packages are possible.

11



That will tells us how many bins are required. The calculation comes out
to
Cs1+Cso+Cs3=8+28+56=92

possible packages, and therefore 92 bins are required.

. Using the exponent principle, we can compute that there are 167 = 268, 435, 456
possible assignments regardless of repetition. Using the Permutations
Principle, we have Pig7 = 57,657,600 possibilities excluding repetition.
Thus, the probability of no interference is

Pig7; 57,657,600
167 268,435,456

=0.214791- .-

which means that the probability of interference is

57,657,600

Y 0.785208 - - -
268, 435, 456 0785208

. Tell grandma that there are Psgp5 = 30,629,362,512,000 possible re-
sponses. That’s between 30 trillion and 31 trillion responses.

. For the first part, we know that there are 40 variables. Therefore, there
are

(40)(39)

040,2 = =780

correlation coefficients.

For the second part, we know there are 5671 pairs. So we have to find n
such that
Cp,2 = 5671

and that might be annoying with guess-and-check. However, if we recall
the shortcut formula for the handshake principle, we obtain

n(n—1)/2 = 5671
n(n—1) = 11,342
n?—n = 11,342
n?—n—-11,342 = 0
n = (11\/(—1)2—4(1)(—11,342)) /(2)
n = (1i 45,369)/2
= (1+213)/2
— 107 or — 106

Naturally, a negative number of variables does not make sense, so there
must have been 107 variables in the data set. We can check our work with

(107)(106)/2 = 5671

12



5. We have 8 days that require shirts, and 3 categories of shirts. Therefore,
we can compute

10!
010,8 = @ =45
or we can compute
C S 45
10,2 = 551 =

and either way, we get that there are 45 possible plans.

6. Using the exponent principle, we can compute that there are 8 = 512
combinations possible, in general. There are Ps 3 = (8)(7)(6) = 336 com-
binations without a repeated digit. Therefore, the probability of a random
combination not repeating a digit is given by

Pss 336
= = — = 0.65625
83 512
Yet, this is not what was asked for! The complement principle tells us
that the probability of a repeated digit occurring by accident is given by

1 —0.65625 = 0.34375

7. We have 330 students and 6 six languages. Therefore, we can compute
Cs35,330 = 34,120, 889, 067
or alternatively
Cs35,5 = 34,120,889, 067

enrollments are possible.

8. In the first part, with 11 fencers showing up, we have
11(10)
2
matches that will take place. In the second part, we would have to find n
such that C,, o = 136, and that might be irritating with guess-and-check.

However, if we remember the shortcut formula for the handshake principle,
we have

Cinpe = =95

Chno = 136
nin—1)/2 = 136
nn—1) = 272
n?—n = 272
n>—n—-212 = 0

n = (1 + /(12— 4(1)(472)) /2
n = ((1ix/@) /2

(1+£33)/2
= 17o0r —16

13
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Since it doesn’t make sense for there to be —16 fencers, we know that the
answer must be 17 fencers. We can check with (17)(16)/2 = 136, and be
confident that we found the correct answer.

For 18 bits, 28 = 262, 144 colors are possible.

We compute that there are 8 = 32, 768 combos for the lock. Then, 32,768
seconds is 0 days, 9 hours, 6 minutes, and 8 seconds.

We can use either combinations or permutations. Note that there are 4
flawed tires, but 196 good tires. Using combinations, we have Cjg¢,15 sets
of tires drawn only from the 196 good tires, compared to Cagg,1s tires
drawn from all 200 tires. The ratio is the probability of an 18-wheeler
getting only good tires. We have

Cho6,18 1.27258 - .- x 10%°
T — 0.683692 - - -
Ca00,18  1.86134--- x 10%°

which means that the probability of having one or more flawed tires (using
the complement principle) comes out to

1—-0.683692--- = 0.316307 - - -

which is shockingly high—considering that 98% of the tires were good.

Using permutations, we have

Pigs 18 8.14757 x 1040
— = = (0.683692- - -
P200718 1.19170 x 10%L

and then computation is the same after that.
There are Py74 = 4,280, 760 possible ways for the election to go.

We can use either combinations or permutations. Note that there are 97
good capacitors and 3 bad capacitors in this shipment of 100 capacitors.
Using combinations, we have Cyg7 5 sets of capacitors drawn only from the
97 good capacitors, compared to Cgg, 5 sets drawn from all 100 capacitors.
The ratio is the probability of a pace-maker getting only good capacitors.

We have
Co75 64,446,024

Croos 75,287,520

= (.855998 - - -

telling us that the probability is 85.59% of a pacemaker getting only good
capacitors. This is surely not high enough.

14. We have 24 members and 4 officers, giving us

Pags = (24)(23)(22)(21) = 255,024
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15.

16.

17.

possible election outcomes. Those 4 officers cannot run for the judicial
board, but the other 20 members can. We have

20(19)(18)(17)(16)
5(4)(3)(2)(1)

possible election outcomes. It is rather a surprising difference.

Caos = = 15,504

We compute that 2°6 = 7.20575--- x 10'6 keys are possible. That will
require 5.62949 x 107 seconds which is 1 year, 286 days, 13 hours, 30
minutes. (By the way, if order didn’t matter, there would be only 57 keys,
a number we will compute in the next problem. That would be a truly
absurd number of keys, far smaller than 7.20575--- x 10'6. It is for this
reason that order matters in cryptographic secret keys.)

By the way, there are cryptographic flaws in the DES that actually are
hard to describe at this point, and which would cut this time in half. With
those in mind, it would require 0 years, 325 days, 18 hours, 45 minutes to
check all keys. This is the worst-case running time. Perhaps the first guess
will be lucky, or perhaps all those guesses will be required, succeeding on
the last one. On average, (what statisticians call “the expected value”),
it would be half that, or 0 years, 162 days, 21 hours, and 22 minutes. If
the cryptanalyst had more computers, it would be faster still.

This is why no one should be using the Data Encryption Standard any-
more. If you’d like to learn more about this, then consider reading Brute
Force: Cracking the Data Encryption Standard, by Matt Curtain, pub-
lished by Springer in 2005.

We have 56 positions for bits, and we have 2 categories of bits—0s and 1s.
We can compute

57!
Cs7.56 = BT~ o7
or we can compute
57!
5.1 = 1561

getting the correct answer, 57, in each case.

We have three democrats and three republicans. First, let’s analyze the
situation if a democrat speaks first. We’d have three choices for the first
speaker, three choices for the second speaker, two choices for the third
speaker, two choices for the fourth speaker, one choice for the fifth speaker,
and one choice for the sixth speaker. We have then

3)3)(2)(2)(1)(1) = 36

arrangements, plus another 36 if a republican speaks first. This brings us
to 72 orderings which have the parties alternating. Since there are 720
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18.

19.

20.

21.

orderings overall, the probability that the parties alternate by coincidence
is
272 1

6l 720 10
which is surprisingly high.

We will solve this problem by computing how many juries are possible
drawing all 12 jurors from Queens, and computing how many juries are
possible when drawing 12 jurors from the 40 person pool. The probability
will be the ratio of these numbers. We have

Coas.12 5,200, 300

- = U 10---
040’12 57 586, 853, 480 O 0009308 O

and we conclude that the probability of this happening by coincidence is
slightly less than 1 in 1000. I think that perhaps filing a motion is in
order.

There are Pj24 = 11,880 possible ballots before the extension. If we
extend the rules, P26 = 665,280 ballots are possible.

While the English alphabet has 26 letters, we have banned 6 of them,
leaving 20 letters. So, there are 20 = 64,000,000 record locators. If we
exclude letter X, there are 19% = 47,045, 881 of them. The probability of
not having an X is given by

47,045,881

i At Rty ) 1.--
64,000, 000 073509

so the probability of having an X is given by

47,045, 881

_ 00T 0.264908 - - -
64, 000, 000 0264908

First, let’s count the number of 4-digit numbers. For the first position, we
can have a 1, 2, 3, ..., 9, but not a 0. Thus there are 9 choices for that
position. Each of the other positions can be any numeral, so there are 10
choices for those. We conclude that there are

(9)(10)(10)(10) = 9000

possible 4-digit numbers.

Now for palindromes, we still have 9 choices for the first position. For the
second position, we have 10 choices. (The reasons are the same as in the
previous paragraph.) For the third position, we are forced to photocopy
the numeral placed in the second position—that is our only possibility.
Likewise, the fourth position must be a photocopy of the numeral placed
in the first position. We have

(9)(10)(1)(1) =90

16



22.

23.

24.

possible 4-digit palindromes.

Thus the probability that a 4-digit number is a palindrome is given by
90/9000 = 1/100.

For the third and fifth position, we exclude six letters out of the 26-letter
English alphabet, leaving us with 20. We further exclude 2 of those, re-
sulting in 18, for the first position. The second, fourth, and sixth positions
are numerals, and there are 10 possibilities there. This leaves us with

(18)(10)(20)(10)(20)(10) = 7,200, 000
possible postal codes.

Using the factorial principle, there are 5! = 120 possible orderings of the
coats. Using the permutation principle, there are P55 = 120 possible
orderings. Only one of those orderings is the correct one. Therefore, the
probability is 1/120.

By now we know that there are 264 possible 64-bit strings. That turns out
to be
204 = 1.84467... x 10"

We are interested in knowing how many of those have weight 10. That
will be

64! "
064,10 = W =1.51473--- x 10

or equivalently

64!
Coapa = ——— = 1.51473--- x 10"
0451 101541
depending if you want to think of a weight 10 string of 64 bits as having
10 ones (the first computation) or as having 54 zeros (the second compu-
tation). Of course, each way gives us the same answer.

To put this in perspective, recall that in Problem 15, we had a cryptanalyst
whose mini-supercomputer had 64 cores, and each core can try twenty
million secret keys per second. While we were not asked about this, it
might give us a frame of reference. In the situation where we know the
weight to be ten, 1183.38--- seconds are required, which is 0 hours, 19
minutes, and 43 seconds. That’s in stark contrast to the general case of
264 secret keys, which would require 14,411,484,375 seconds, which is 456
years, 359 days, 14 hours, and 6 minutes.

As you can see, the cryptanalyst acquires a tremendous advantage when
the weight is known, in this situation.
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