
Sage for Undergraduates

(online version)

Gregory V. Bard

Dept. of Mathematics, Statistics, and Computer Science,
University of Wisconsin—Stout, Menomonie, Wi, 54751

E-mail address: bardg@uwstout.edu

2010 Mathematics Subject Classification. Primary: 15-04, 34-04, 65-04,
90-04, 97M10. Secondary: 11-04, 12-04, 28-04, 40-04, 68U05.

With warmth I dedicate this book to my husband, Patrick, who has
supported me throughout my career, in good years and in bad years, and
who has spent many evenings alone because I was working on this book.

Contents

Preface—How to Use This Book xv

Acknowledgements xix

Chapter 1. Welcome to Sage! 1
1.1. Using Sage as a Calculator 1
1.2. Using Sage with Common Functions 3
1.3. Using Sage for Trigonometry 7
1.4. Using Sage to Graph 2-Dimensionally 9
1.4.1. Controlling the Viewing Window of a Plot 11
1.4.2. Superimposing Multiple Graphs in One Plot 14
1.5. Matrices and Sage, Part One 19
1.5.1. A First Taste of Matrices 19
1.5.2. Complications in Converting Linear Systems 20
1.5.3. Doing the RREF in Sage 22
1.5.4. Basic Summary 24
1.5.5. The Identity Matrix 25
1.5.6. A Challenge to Practice by Yourself 25
1.5.7. Vandermonde’s Matrix 26
1.5.8. The Semi-Rare Cases 28
1.6. Making your Own Functions in Sage 30
1.7. Using Sage to Manipulate Polynomials 34
1.8. Using Sage to Solve Problems Symbolically 37
1.8.1. Solving Single-Variable Formulas 37
1.8.2. Solving Multivariable Formulas 38
1.8.3. Linear Systems of Equations 39
1.8.4. Non-Linear Systems of Equations 40
1.8.5. Advanced Cases 43
1.9. Using Sage as a Numerical Solver 43
1.10. Getting Help when You Need It 47
1.11. Using Sage to Take Derivatives 49
1.11.1. Plotting f(x) and f ′(x) Together 50

vii

viii CONTENTS

1.11.2. Higher-Order Derivatives 50
1.12. Using Sage to Calculate Integrals 51
1.13. Sharing the Results of Your Work 60

Chapter 2. Fun Projects using Sage 63
2.1. Microeconomics: Computing a Selling Price 64
2.2. Biology: Clogged Arteries and Poiseuille’s Law 69
2.3. Industrial Optimization: Shipping Taconite 71
2.4. Chemistry: Balancing Reactions with Matrices 73
2.4.1. Background 73
2.4.2. Five Cool Examples 74
2.4.3. The Slow Way: Deriving the Method 75
2.4.4. Balancing the Quick Way 77
2.5. Physics: Ballistic Projectiles 79
2.5.1. Our First Example of Ballistic Trajectories 80
2.5.2. Our Second Example of Ballistic Trajectories 82
2.5.3. Counter-Battery Fire: 83
2.5.4. Your Challenge: A Multi-Stage Rocket 84
2.6. Cryptology: Pollard’s p− 1 Attack on RSA 85
2.6.1. Background: B-Smooth Numbers and B! 85
2.6.2. The Theory Behind the Attack 87
2.6.3. Computing 2(B!) mod N 88
2.6.4. Your Challenge: Make All This Happen in Sage 89
2.6.5. Safeguards against Pollard’s Factorial Attack 89
2.7. Mini-Project on Electric Field Vector Plots 90

Chapter 3. Advanced Plotting Techniques 91
3.1. Annotating Graphs for Clarity 91
3.1.1. Labeling the Axes of Graphs 91
3.1.2. Grids and Graphing Calculator-Style Graphs 93
3.1.3. Adding Arrows and Text to Label Features 94
3.1.4. Graphing an Integral 95
3.1.5. Dotted and Dashed Lines 96
3.2. Graphs of Some Hyperactive Functions 97
3.3. Polar Plotting 98
3.3.1. Examples of Polar Graphs 99
3.3.2. Problems that Can Occasionally Happen 100
3.4. Graphing an Implicit Function 102
3.5. Contour Plots and Level Sets 104
3.5.1. An Application to Thermodynamics 107
3.5.2. Application to Microeconomics (Cobb-Douglas Equations) 110
3.6. Parametric 2D Plotting 112
3.7. Vector Field Plots 114
3.7.1. Gradients and Vector Field Plots 115
3.7.2. An Application from Physics 116

CONTENTS ix

3.7.3. Gradients versus Contour Plot 119
3.8. Log-Log Plots 120
3.9. Rare Situations 122

Chapter 4. Advanced Features of Sage 127
4.1. Using Sage with Multivariable Functions and Equations 127
4.2. Working with Large Formulas in Sage 129
4.2.1. Personal Finance: Mortgages 129
4.2.2. Physics: Gravitation and Satellites 132
4.3. Derivatives and Gradients in Multivariate Calculus 134
4.3.1. Partial Derivatives 134
4.3.2. Gradients 135
4.4. Matrices in Sage, Part Two 135
4.4.1. Defining Some Examples 135
4.4.2. Matrix Multiplication and Exponentiation 136
4.4.3. Right and Left System Solving 137
4.4.4. Matrix Inverses 139
4.4.5. Computing the Kernel of a Matrix 140
4.4.6. Determinants 142
4.5. Vector Operations 144
4.6. Working with the Integers and Number Theory 145
4.6.1. The gcd and the lcm 146
4.6.2. More about Prime Numbers 147
4.6.3. About Euler’s Phi Function 148
4.6.4. The Divisors of a Number 149
4.6.5. Another Meaning for Tau 151
4.6.6. Modular Arithmetic 152
4.6.7. Further Reading in Number Theory 153
4.7. Some Minor Commands of Sage 153
4.7.1. Rounding, Floors, and Ceilings 153
4.7.2. Combinations and Permutations 153
4.7.3. The Hyperbolic Trigonometric Functions 155
4.8. Calculating Limits Expressly 156
4.9. Scatter Plots in Sage 157
4.10. Making Your Own Regressions in Sage 161
4.11. Computing in Octal? Binary? and Hexadecimal? 163
4.12. Can Sage do Sudoku? 163
4.13. Measuring the Speed of Sage 164
4.14. Huge Numbers and Sage 165
4.15. Using Sage and LATEX 166
4.16. Matrices in Sage, Part Three 167
4.16.1. Introduction to Eigenvectors 167
4.16.2. Finding Eigenvalues Efficiently in Sage 169
4.16.3. Matrix Factorizations 170
4.16.4. Solving Linear Systems Approximately with Least Squares 171

x CONTENTS

4.17. Computing Taylor or MacLaurin Polynomials 173
4.17.1. Examples of Taylor Polynomials 174
4.17.2. An Application: Understanding How g Changes 175
4.18. Minimizations and Lagrange Multipliers 177
4.18.1. Unconstrained Optimization 177
4.18.2. Constrained Optimization by Lagrange Multipliers 179
4.18.3. A Lagrange Multipliers Example in Sage 179
4.18.4. Some Applied Problems 181
4.19. Infinite Sums and Series 182
4.19.1. Verifying Summation Identities 183
4.19.2. The Geometric Series 183
4.19.3. Using Sage to Guide a Summation Proof 184
4.20. Ultra-High Precision Arithmetic 186
4.21. Systems of Inequalities and Linear Programming 186
4.21.1. A Simple Example 186
4.21.2. Convenient Features in Practice 188
4.21.3. The Polyhedron of a Linear Program 190
4.21.4. Integer Linear Programs and Boolean Variables 190
4.21.5. Further Reading on Linear Programming 191
4.22. Differential Equations 191
4.22.1. Some Easy Examples 192
4.22.2. An Initial-Value Problem 194
4.22.3. Graphing a Slope Field 195
4.22.4. The Torpedo Problem: Working with Parameters 197
4.23. Laplace Transforms 199
4.23.1. Transforming from f(t) to L(s) 199
4.23.2. Computing the Laplace Transform “The Long Way” 200
4.23.3. Transforming from L(s) to f(t) 201
4.24. Vector Calculus in Sage 202
4.24.1. Notation for Vector-Valued Functions 202
4.24.2. Computing the Hessian Matrix 203
4.24.3. Computing the Laplacian 204
4.24.4. The Jacobian Matrix 205
4.24.5. The Divergence 206
4.24.6. Verifying an Old Identity 207
4.24.7. The Curl of a Vector-Valued Function 208
4.24.8. A Challenge: Verifying Some Curl Identities 212
4.24.9. Multiple Integrals 212

Chapter 5. Programming in Sage and Python 215
5.1. Repetition without Boredom: The For Loop 216
5.1.1. Using Sage to Generate Tables 216
5.1.2. Carefully Formatting the Output 217
5.1.3. Arbitrary Lists 218
5.1.4. Loops with Accumulators 219

CONTENTS xi

5.1.5. Using Sage to find a Limit, Numerically 220
5.1.6. For Loops and Taylor Polynomials 222
5.1.7. If You Already Know How to Program. . . 223
5.2. Writing Subroutines 224
5.2.1. An Example: Working with Coinage 224
5.2.2. A Challenge: A Cash Register 226
5.2.3. An Example: Designing Aquariums 226
5.2.4. A Challenge: A Cylindrical Silo 229
5.2.5. Combining Loops and Subroutines 229
5.2.6. Another Challenge: Totaling a Sequence 230
5.3. Loops and Newton’s Method 231
5.3.1. What is Newton’s Method? 231
5.3.2. Newton’s Method with a For Loop 233
5.3.3. Testing the Code 235
5.3.4. Numerical vs Exact Representations 237
5.3.5. Working with Optional and Mandatory Parameters 237
5.3.6. Returning a Value and Nesting Subroutines 239
5.3.7. A Challenge: Finding Parallel Tangent Lines 242
5.3.8. A Challenge: Halley’s Method 243
5.4. An Introduction to Control Flow 244
5.4.1. Verbosity Control 244
5.4.2. Theoretical Interlude: When Newton’s Method Goes Crazy 247
5.4.3. Stopping Newton’s Method Early 249
5.4.4. The List of Comparators 252
5.4.5. A Challenge: How Many Primes are Less than x? 252
5.5. More Concepts in Flow Control 252
5.5.1. Raising an “Exception” 253
5.5.2. The If-Then-Else Construct 255
5.5.3. Easy Challenge: Registrar’s End of Semester Run, Part 1 257
5.5.4. A Harder Challenge: End of Semester Run, Part 2 257
5.6. While Loops versus For Loops 258
5.6.1. A Question about Factorials 258
5.6.2. A Challenge: Finding the Next Prime Number 259
5.6.3. Newton’s Method with a While Loop 259
5.6.4. The Impact of Repeated Roots 260
5.6.5. Factorization by Trial Division 262
5.6.6. A Mini-Challenge: Trial Division, Stopping Early 263
5.6.7. A Challenge: An Upgraded Cash Register 264
5.7. How Arrays and Lists Work 265
5.7.1. Lists of Points and Plotting 265
5.7.2. A Challenge: Making the Plot Command 266
5.7.3. Operations on Lists 267
5.7.4. Looping through an Array 269
5.7.5. A Challenge: Company Profit Report 270
5.7.6. Averaging Some Numbers 270

xii CONTENTS

5.7.7. Mini-Challenge: Average both With and Without Dropping 272
5.7.8. Mini-Challenge: Doubling Counting the Highest Quiz 272
5.7.9. A Challenge: The Registrar’s Run, Part Three 272
5.7.10. A Utility: Returning Only Real, Rational, or Integer Roots 272
5.8. Where Do You Go from Here? 274
5.8.1. Further Resources on Python Programming 274
5.8.2. What Has Been Left Out? 275

Chapter 6. Building Interactive Webpages with Sage 279
6.1. The Six-Stage Process for Building Interacts 280
6.2. The Tangent-Line Interact 281
Stage 0: Concept Development 281
Stage 1: Design a Sage Function 282
Stage 2: Polish this Function 284
Stage 3: Convert to an Interactive Function 285
Stage 4: Insert into a Web Template 286
Stage 5: Flesh-Out the Webpage 288
6.3. A Challenge to the Reader 288
6.4. The Optimal Aquarium Interact 288
6.5. Selectors and Checkboxes 289
6.6. The Definite Integral Interact 290

Appendix A. What to Do When Frustrated! 293

Appendix B. Transitioning to Sage Cloud 299
B.1. What is Sage Cloud? 299
B.2. Getting Started in the Cloud 300
B.3. Other Cloud Features 301

Appendix C. Other Resources for Sage 303

Appendix D. Linear Systems with Infinitely-Many Solutions 307
D.1. The Opening Example 307
D.2. Another Example 310
D.3. Exploring Deeper 312
D.3.1. An Interesting Re-Examination of Unique Solutions 312
D.3.2. Two Equations and Four Unknowns 313
D.3.3. Two Equations and Four Unknowns, but No Solutions: 313
D.3.4. Four Equations and Three Unknowns 314
D.4. Misconceptions 314
D.5. Formal Definitions of REF and RREF 315
D.6. Alternative Notations 316
D.7. Geometric Interpretations in 3 Dimensions 316
D.7.1. Visualization of These Cases 317
D.7.2. Geometric Interpretations in Higher Dimensions 318
D.8. Dummy-Variable Notation 318
D.9. Solutions to Challenges 319

CONTENTS xiii

Appendix E. Installing Sage on your Personal Computer 321

Appendix F. Index of Commands by Name and by Section 325

Preface—How to Use This
Book

As the open-source and free competitor to expensive software like Maple,
Mathematica, Magma and Matlab, Sage offers anyone with access to a web-
browser the ability to use cutting-edge mathematical software, and display
one’s results for others, often with stunning graphics. I’m sure that you
will find Sage far easier to use than a graphing calculator, and vastly more
powerful.

There is no need to read this entire document, just as you would never
read the dictionary cover to cover. This book is ideal for self-study, but if
you are assigned this book as part of a class, then your professor will tell
you which section numbers correspond with what you need to be reading.

For other readers, who reading independently of a specific class, I have
the following suggestions:

• Chapter 1 contains the basics—what you really need to know. Most
of the common tasks in Sage were carefully designed to be as intu-
itive as possible, with notation as close as possible to how mathe-
matics is done on the whiteboard or with a pencil. I recommend
that you never try to read more than 3 entire sections in one day.
Otherwise there is too much for your brain to absorb while still
keeping the experience fun and new. However, 1–2 sections per
day should be easily digestible.

Note: Personally, I recommend just reading Chapter 1, and then start
playing around on your own. The best way to learn a new bit of

xv

xvi PREFACE—HOW TO USE THIS BOOK

computer software is to use it recreationally. Using the table of
contents (near the front of the book) or the index of commands (at
the end of the book) you can always look up how to do some task
which you haven’t learned yet. If you get flummoxed at any point,
be sure to check out Appendix A, “What to Do When Frustrated.”
• Chapter 2 contains projects where you can use Sage to solve math-

ematics problems as they arise in other subjects—cryptography,
physics, chemistry, biology, and so forth. These projects are pri-
marily aimed to be tractable after reading Chapter 1. However, in
some cases, another section from a higher numbered chapter will be
required also. Of course, in those cases, the dependency is clearly
marked. These projects are intended to be assigned over weekends.
They are not large enough to be semester projects, but they are
too large to be homework problems.
• Chapter 3 is all about making beautiful plots and graphs. I have

put in there everything that I could. However, some types of plots,
including 3D plots, animated plots, and multicolored plots, cannot
be easily represented in a printed black-and-white book. There-
fore, those types of plots are covered in the electronic-only online
appendix to this book “Plotting in Color, in 3D, and Animations,”
available on my webpage www.gregorybard.com for downloading.
• Chapter 4 is enormous, and contains small sections that discuss ad-

vanced mathematical topics. Sage can handle an enormous variety
of math problems. This chapter was designed so that the individual
sections can be read independently. There is no need to read the
sections in Chapter 4 in order, unless you want to.
• Chapter 5 is about how to program in Python using Sage. As

a computer algebra system, Sage is built on top of the computer
language Python. Therefore, you can use Python commands in
Sage. Sometimes this is really useful—for example, you can write
for loops to make tables very easily. At other times it is convenient
to write entire computer programs in Python using Sage as the
interface. This is even more true when using Sage Cloud.
• Chapter 6 covers making interactive webpages (called apps) using

Sage. The process is remarkably straightforward. I have a six-stage
process which I’ve been using myself. You can make extremely
interesting interacts using Sage, and I’ll bet you’ll be surprised at
how easy it is to make your own.
• Appendix A is “What to Do When Frustrated,” where I have a list

of questions you should ask yourself if you get stuck in a situation
where Sage is refusing to respond to your commands in the way
that you’d like. In almost all cases, one of the listed items will
present you with a way of resolving the frustration.

PREFACE—HOW TO USE THIS BOOK xvii

• Appendix B is about gaining familiarity with Sage Cloud. Cloud
computing is a new and exciting way to compute using the internet,
instead of your local machine, as a place for storing your files.

Note: Generally users will want to switch to Sage Cloud after completing
Chapter 1, before tackling the projects in Chapter 2 or the advanced
work of Chapters 4–6. I think Chapter 3 can be learned before or
after learning Sage Cloud, with no disadvantage to the user.
• Appendix C is a collection of further resources on Sage, for readers

who would like to learn more than this book contains.
• Appendix D is my response to the fact that students often do not

have facility with systems of linear equations that have an infinite
number of solutions. This concept is often grasped as an idea, but
the details are often not there when I need students to know them.
Therefore, I have decided to be hyper-thorough and devote a large
number of pages to explaining this (admittedly difficult) subject. I
hope it will be useful to students.
• Appendix E is what you should read if you want to learn how to

install Sage on your local machine.
• Appendix F is a sixteen (!) page index of all the commands in this

book, for your reference. Special thanks to Thomas Suiter, who
prepared it.
• The online electronic appendix will cover plotting in color, anima-

tions, and 3D graphics. Those subjects are not suited to a black-
and-white book, and therefore cannot be printed within these cov-
ers. You can download that from my webpage

www.gregorybard.com

by clicking on the link, at the left of the screen, for Sage.

Let’s Dive In! Right Now!

Without any hesitation whatsoever, open up a web browser at this very
moment. Type in the following URL:

https://sagecell.sagemath.org/

You have now connected to “The Sage Cell Server.” Now you shall see
a large window (called a cell) and a big button marked “Evaluate.” In that
cell, type the following

solve(x^2 - 16 == 0, x)

and then click “Evaluate.”
You should receive back the answer

[x == -4, x == 4]

which is clearly the correct set of two solutions to the equation x2− 16 = 0.
You have now solved your first math problem with Sage. Congratulations.

Welcome to Sage! You are now ready to begin reading Chapter 1.

Acknowledgements

First, I would like to thank William Stein, the creator of Sage, for his en-
couragement, assistance, and access to supercomputing resources which have
made my cryptanalytic research possible. Prof. Stein is the founder of Sage,
its chief architect and organizer, and the source of enthusiasm for the Sage
community—which by this point now includes hundreds of people across
many countries and continents. Many of the original lines of Sage itself as
well as Sage Cloud were personally coded by Prof. Stein.

This book began as “A Guide to Sage” while I was teaching for five weeks
in Beijing at the Chinese Academy of Sciences, Academy of Mathematics and
Systems Science, Key Laboratory for Mathematics Mechanization, during
the Summer of 2010. I am very grateful for being given that special oppor-
tunity to work with such advanced students. I was teaching from another
book that I have written, Algebraic Cryptanalysis, published by Springer in
2009. I gave several hours of instruction in Sage, but it became clear that
having written instructions would be more useful for students. One can
thumb through them while working on Sage, and therefore the document
that would eventually become this book was born. I am extraordinarily
grateful for the opportunity to have visited that excellent institution. When
I left there, this document was 37 pages, but from tiny acorns do mighty
oak trees grow.

Like many researchers who invent a new algorithm as part of their PhD
dissertation at the University of Maryland, I had to write code to prove
that my algorithm is effective, correct, and efficient. However, such code is
often discarded after the PhD is conferred. I would like to thank Martin
Albrecht, who first introduced me to the Sage community and who lead to
the inclusion of my dissertation code into the Sage libraries, in what has
become the M4RI project. Without Martin, I’d never had heard of Sage, nor
would my dissertation code be in use by people scattered about the world.
As it turns out M4RI is an evolving project, continually upgraded by many
different researchers, and probably today contains very few of my original

xix

xx ACKNOWLEDGEMENTS

lines. That is an example of how software can evolve. You can read about
the original algorithm in Chapter 9 of Algebraic Cryptanalysis.

I would also like thank Robert Beezer and Robert Miller for giving me
encouragement in using Sage in my teaching and research, respectively. In
particular, Robert Beezer’s outstanding (and free) eBook A First Course in
Linear Algebra was an inspiration for me while writing this book.

The Sage Cell Server has made Sage accessible to a much wider audience
than has ever before been dreamed possible. Even for those experienced
with Sage, the user experience is now vastly improved. This important and
difficult work has been done by Jason Grout, Ira Hanson, Steven Johnson,
Alex Kramer, and William Stein. Originally, Sage was suitable for graduate
students, faculty, and perhaps senior math majors. Then the Sage Notebook
Server came, bringing Sage to the mid-career undergraduate. Now, thanks
to the Sage Cell Server, it is now appropriate to use Sage even in Precalculus
classes, if desired.

The American Mathematics Society was most flexible with me on the
matters of deadlines as well as the many images in this textbook. Producing
a book requires a surprisingly large number of steps, and I am grateful for
the support of Ina Mette, the acquisitions editor, and Marcia Almeida, her
assistant. I am particularly grateful for Ina Mette’s energetic and enthusi-
astic encouragement that I turn what was once a small guide into a larger
(published) book. This project would not exist without her encouragement.

I would like to thank Andrew Novocin for teaching me how to include
*.png files in LaTeX documents, which saved me the time of manually
converting the file formats of the armada of screen captures that fill this
book. I might have otherwise abandoned this entire book project.

No author can proofread his or her own work effectively, but that is
particularly the case for me. I am very grateful for the assistance of the
proofreaders Joseph Robert Bertino, Joseph Loeffler, and Thomas Suiter,
who have each made suggestions and corrections on portions of this doc-
ument. Of particular merit, Thomas Suiter made the index, and Joseph
Bertino has nobly borne (without complaint) an enormous workload from
me through the last few years—both from this book and other projects. Of
course, any errors that remain are my responsibility.

My first job after getting my PhD from the University of Maryland was
at Fordham University, in The Bronx, NY, where I was appointed to one of
the four-year “Peter M. Curran Visiting Assistant Professorships.” I made
some progress on this project during my time at Fordham, after return-
ing from my summer in China. I received encouragement and suggestions
from Shaun Ault, Melkana Brakalova, Armand Brumer, Michael Burr, Bill
Campbell, Janusz Golec, Maryam Hastings, William Hastings, Nick Kintos,
Robert Lewis, Damian Lyons, Ian Morrison, Leonard Nissim, Cris Poor,
Benjamin Shemmer, Shapoor Vali, and Kris Wolff. Fred Marotto’s book
Introduction to Mathematical Modeling Using Discrete Dynamical Systems,
published by Cengage in 2005, was also an inspiration for this work, though

ACKNOWLEDGEMENTS xxi

I did not have the opportunity to discuss our areas of common interest very
often. Jack Kamis, Mila Martynovsky and Michael “Misha” Zigelbaum pro-
vided me with valuable and practical teaching advice.

In particular, Shapoor Vali and I wrote our books at roughly the same
time, so we endured the struggle of writing book chapters, proofreading
drafts, and drawing up book-proposals simultaneously. We have both crossed
a great desert, not without pain and suffering, and now we can both enjoy
the oasis at the other side.

Many Fordham undergraduates gave me a great deal of tips, corrections,
opportunities for improvement, and ideas. At the risk of accidentally ex-
cluding someone, I wish to mention the following Fordham students: James
Compagnoni, Gray Crenshaw, Dan DiPasquale, Patrick Fox, Alex Golec,
Simon Kaluza, Kyle Kloster, Peter Muller, Luigi Patruno, Seena Vali, and
Sean Woodward. Much encouragement was also given by Ed Casimiro, for
which I am grateful.

After the four-year position at Fordham had elapsed, I had the great luck
to be hired at the University of Wisconsin—Stout, the polytechnic of the
University of Wisconsin system. This was a great boon for me as I received
my undergraduate degree in Computer & Systems Engineering from Rens-
selaer Polytechnic Institute in , and similarly my father received his
undergraduate degree in Mechanical Engineering from ETH in Zürich (the
polytechnic of Switzerland) back in . Accordingly returning to the at-
mosphere of a polytechnic was somewhat like coming home. While the three
institutions are far from being identical triplets, the noble goal of prepar-
ing hard-working students to become engineers, scientists, and managers, or
members of other lucrative technical professions, creates an attitude of focus
on the pragmatic, on hard work, and on exactitude. This “polytechnic atti-
tude” is reflected across the spectrum of academic rank, from the Chancellor
to the freshmen. It breeds respect for mathematics in general, and calculus
in particular. At UW Stout, mathematics is seen as a bridge to important
career-related coursework, and not as a barrier to graduation, as it was often
viewed at Fordham, by both students and high-ranking administrators.

The vast, vast majority of this book was written while working for
UW Stout. Both Dean Jeffery Anderson and Dean Charles Bomar pro-
vided administrative, financial, and emotional support for this project. The
degree of cooperation in our Department of Mathematics, Statistics, and
Computer Science is extremely rare and heartwarming. Unless I am very
much mistaken, every last member of the department has contributed to this
book via a suggestion, correction, comment, filling in for me in class when
I was away at a conference, or by giving encouragement. Teaching 24 cred-
its per year in a climate thoroughly unfriendly1 to human habitation, while

1This is not an exaggeration. Two examples will have to suffice. On the first day
of classes in 2014, namely January 28th, as I was leaving the house to go to campus,
weather.com gave a temperature of −22◦F on the thermometer, and −41◦F with the

xxii ACKNOWLEDGEMENTS

attempting to maintain some fraction of a research life, has brought us to-
gether. With great respect, I inscribe their names here at this time: Anne
Antonippillai, Wan Bae, Alexander Basyrov, Chairman Christopher Ben-
del, Seth Berrier, Jeffrey Boerner, Diane Christie, Steven Deckelman, Brent
Dingle, Seth Dutter, Jeanne Foley, Eugen “Andre” Ghenciu, Petre “Nelu”
Ghenciu, Nasser Hadidi, Matt Horak, Ayub Hossain, Amitava Karmaker,
Deborah Kruschwitz-List, Terrence Mason, Valentina “Diana” Postelnicu,
Laura Schmidt, Loretta Thielman, Peter Thielman, Keith Wojciechowski,
and Mingshen Wu. Additionally, the former faculty members Joy Becker,
John Hunt, Benjamin Jones, Dennis Mikkelson, and Eileen Zito, have pro-
vided advice, encouragement, or course materials. Furthermore, several of
our temporary hires have voluntarily taken upon themselves either phenom-
enally unpleasant courses or the elevated obligations of full-time faculty,
without additional financial compensation, and are therefore particularly
praiseworthy: Jim Church, Brian Knaeble, Shing Lee, Olga Lopukhova,
John Neiderhauser, Mark Pedersen, and Dennis Schmidt. The chairman,
Chris Bendel, is particularly dedicated and an outstanding peacemaker who
has created a work environment of collaboration, cooperation, and mutual
respect often dreamed of, but almost never actually found, in academic life.
In MSCS, we labor to assist one another, in contrast to another department
in our building which I will not explicitly name, where the senior faculty
have made a hobby of smashing the careers and shattering the dreams of
their own junior faculty.

Outside of my department at UW Stout, Alan Block, Mark Fenton,
Julie Furst-Bowe, Jennifer Grant, Mary Hopkins-Best, Michael Levy, Steve
Nold, Marlann Patterson, and Todd Zimmermann have given me bountiful
encouragement. I would also like to thank the entire Department of Biology
who have set a very high standard of scholarship, of interactive teaching,
of skilled grant-writing, of innovative and laboratory-focused coursework,
and who have taught us all to get undergraduates heavily and materially
involved in research.

It would be customary to list here the students at UW Stout who have
enriched my teaching and given me useful feedback. Such a list would se-
riously lengthen the book, however. I have been very lucky, in that I have
been given highly applied courses, with content extremely applicable to pro-
fessional practice in both engineering and management. You will see this
effect in the body of this book, as many examples will be drawn from physics
and economics in concordance with the professional aspirations of my stu-
dents. The vast majority of my students at some time or another have given
me a suggestion, a correction, or shown me some new application of math-
ematics to their chosen fields of study. I have studied and taught at other
institutions, but this phenomenon is one that I have only encountered at

windchill. For my metric readers, that is −29.4◦C on the thermometer, and −40.6◦C with
the windchill. On May 2nd and May 3rd, 2013, we had 17 inches of snow (that’s 43.2 cm).

ACKNOWLEDGEMENTS xxiii

UW Stout, and at Oxford in the UK when I was a visiting student there.
Since I am unable to list all the students by name, I will thank them by
course number: Math-123, Finite and Financial Mathematics; Math-154,
Calculus II ; Math-380/580, Cryptography ; Math-447/747, Numerical Anal-
ysis II ; and CS-480/680, Computer Security.

In addition to the faculty at universities where I have been teaching,
the faculty of Columbia University and of the City University of New York
(CUNY), two of the best institutions in “the city” and the nation, have given
me great help. I have enjoyed conversations on both research and teach-
ing with David Allen, David Bayer, Maria Chudnovsky, Kenneth Kramer,
Hunter Johnson, and Vladimir Shpilrain.

In physics and in chemistry, I have had the tremendous benefit of con-
sulting experts. For physics, it was Gabriel Hannah, and for chemistry, it
was Gergely Sirokman. They have checked their relevant sections carefully,
and therefore the reader can be confident that those sections are free of
mistakes, with one exception. In the physics problems, I have not carried
the units through the formulas and into equations, as is required by that
subject. In applied mathematics, we generally do not do this, and it would
be highly disorienting and tedious for me to modify this already completed
book to match the convention of physicists.

I have received a great deal of encouragement in this project, including
detailed suggestions, from those listed above, as well as Martin Brock, Bruce
Cohen, Carmi Gressel, Marshall Hampton, Benjamin Jones, David Joyner,
Craig Larson, Clement Pernet, and Susan Schmoyer.

My former dissertation advisor and trusted friend Lawrence Washington
has inspired me with his extremely successful textbooks. He has set a very
high bar for the rest of us to aspire to. I frequently recommend Cryptography
with Coding Theory, by Wade Trappe and Lawrence Washington, to anyone
who wants to learn cryptography—from the undergraduate sophomore to
the senior faculty member.

The funding for Sage comes in large part from the National Science Foun-
dation, and in particular the divisions listed below. The Sage community is
grateful for the support of the National Science Foundation grants:

• DMS-0545904, Division of Mathematical Sciences, “CAREER: Co-
homological Methods in Algebraic Geometry and Number Theory,”
• DMS-0555776, Division of Mathematical Sciences, “Explicit Ap-

proaches to Modular Forms and Modular Abelian Varieties,”
• DMS-0713225, Division of Mathematical Sciences, “SAGE: Soft-

ware for Algebra and Geometry Experimentation,”
• DMS-0757627, Division of Mathematical Sciences, “FRG: L–func-

tions and Modular Forms,”
• DMS-0821725, Division of Mathematical Sciences, “ SCREMS: The

Computational Frontiers of Number Theory, Representation The-
ory, and Mathematical Physics,”

xxiv ACKNOWLEDGEMENTS

• DMS-0838212, Division of Mathematical Sciences,
“EMSW21–RTG: Research Training Group on Inverse Problems
and Partial Differential Equations,”
• DMS-1015114, Division of Mathematical Sciences, “Sage: Unifying

Mathematical Software for Scientists, Engineers, and Mathemati-
cians,”
• DUE-1022574, Division of Undergraduate Education, “Collabora-

tive Research: UTMOST: Undergraduate Teaching in Mathematics
with Open Software and Textbooks,”
• ACI-1147463, Division of Advanced CyberInfrastructure, “Collabo-

rative Research: SI2-SSE: Sage-Combinat: Developing and Sharing
Open Source Software for Algebraic Combinatorics,”

as well as funding from Microsoft, Sun Microsystems, Enthought Inc., and
Google.

As I mentioned earlier, the Sage community is enormous, with hundreds
of developers in many countries of several continents. Despite the above
mentioned financial support, almost all of the work is performed on an
entirely voluntary and unpaid basis. For the sacrifice of free time on the part
of so many people, the entire Sage community is grateful in the extreme.

Chapter 1

Welcome to Sage!

Mathematics is something that we do, not something that we watch. There-
fore, the best way to learn any branch of mathematics is to actually get
started and give things a try. The same is true for learning Sage! Just con-
nect to the Sage “Cell Server” and dive right on in, trying the examples of
the next few pages.

https://sagecell.sagemath.org/

1.1. Using Sage as a Calculator

First off, you can always use Sage as a simple calculator. For example, if
you type 2+3 and click “evaluate” then you will learn the answer is 5.

The expressions can become as complicated as you like. To calculate the
amount on a simple interest loan at 6% per year for 90 days, and principal
$ 900, we all know the formula to be A = P (1 + rt) so we would just type in

900*(1+0.06*(90/365))

and click “evaluate”. You will learn that the answer is 913.315068493151,
or $ 913.32 after rounding to the nearest penny.

Notice that the symbol for addition is the plus sign, and the symbol for
subtraction is the hyphen. The symbol for multiplication is the asterisk,
and the symbol for division is the forward slash (that’s the one found with
the question mark, not the backslash.) These are the same rules used by
MS-Excel and many computer languages, including C, C++, Perl, Python,
and Java.

For compound interest, we’d need to take exponents. The symbol for
exponents is the caret, found above the number six on most keyboards. It
looks like this “ˆ”.

Let’s consider 12% compounded annually on a signature loan for 3 years,
and a principal of $ 11,000. We all know the formula to be A = P (1 + i)n,
so we would just type in

11000*(1+0.12)^3

1

2 1. WELCOME TO SAGE!

and click “evaluate”. You will learn that the answer is 15454.2080000000,
or $ 15,454.21 after rounding to the nearest penny. By the way, instead of
clicking “evaluate,” you can just press shift-enter on the keyboard, and it
will do the same thing.

Warning: It is very important not to enter a comma in large numbers
when using Sage. You have to type 11000 and not 11,000

For those who don’t like the caret, you can use two asterisks in a row.

11000*(1+0.12)**3

which is actually a throw-back to the historical programming language
FORTRAN which was most popular1 during the 1970s and 1980s.

What if you make a mistake? Let’s say that I really meant to say $ 13,000
and not $ 11,000. Click on the mistake, and correct it using the keyboard,
and change the 11 into 13. Now click “evaluate” again, and all is well.

Grouping Symbols:

When there are multiple sets of parentheses in a formula, sometimes math-
ematicians use brackets as a type of “super parentheses.” As it turns out,
Sage needs the brackets for other things, like lists, so you have to always use
parentheses for grouping inside of formulas.

For example, let’s say you need to evaluate

550

[
1− (1 + 0.05)−30

]
0.05

So you should not type

550 [1 - (1+0.05)^(-30)]/0.05

but rather

550 (1 - (1+0.05)^(-30))/0.05

where the brackets have become parentheses.
Some very old math books use braces { and } as a sort of auxiliary also

to the parentheses and brackets. These too, if they are for grouping in a
formula, must become parentheses. As it turns out, Sage, as well as modern
mathematical books, use the braces { and } to denote sets.

By the way, the above formula was not artificial. It is the value of a loan
at 5% compounded annually for 30 years, with an annual payment of $ 550.
The formula is called “the present value of an annuity.”

1An irrelevant historical aside: Because rewriting software is a painful and time-
consuming process, many important pieces of scientific software remained written in
FORTRAN until a few years ago, and likewise the same is true of business software in COBOL.
Each new programming language incorporates features of the previous generation of lan-
guages, to make it easier to learn, and accordingly one sees some truly ancient seeds of
dead languages once in a while.

1.2. USING SAGE WITH COMMON FUNCTIONS 3

Three Mistakes that are 90+% of My Errors in Sage:

There are three mistakes that I make a lot when using Sage. For example,
if you want to say 11, 000x+ 1200 then you have to type

11000*x+1200

The first error that I sometimes make is that I leave out the asterisk
between 11000 and x. In Sage, you must include that asterisk, as that is the
symbol of multiplication. The second error that I’ll often add a comma inside
the 11000, but it is not acceptable in Sage to write 11,000 for 11000. The
third error is that I’ll have mismatched parentheses. Any Sage expression
should have the same number of (s as it has of)s—no more and no less.

A more complete list is given as Appendix A, “What to Do When Frus-
trated,” on Page 293.

1.2. Using Sage with Common Functions

Now I’ll discuss how Sage works with square roots, logarithms, exponentials,
and so forth.

Square Roots:

The standard “high school” functions are also built-in. For example, type
sqrt(144)

then click “evaluate” and you’ll learn that the answer is 12. From now
on, I’m not going to say “click evaluate”, because repeating that might get
tiresome; I’ll assume that you know you have to do that. Since Sage likes
exact answers, try

sqrt(8)

and get 2*sqrt(2) as your answer. If you really need a decimal, try instead
N(sqrt(8))

and obtain
2.82842712475.

which is a decimal approximation.
The N() function, which can also be written n(), will convert what is

inside the parentheses to a real number, if possible. Usually that is a decimal
expansion, thus unless what is inside the parentheses is an integer2 then it
will be, necessarily, an approximation. Sage will assume that all decimals
are mere approximations, so for example

2To be mathematically correct, I should say “an integer or a fraction with denominator
writable as a product of a power of 5 and a power of 2.” For example, 25ths, 16ths,
and 80ths can be written exactly with decimals, where as 3rds, 15ths, and 14th cannot.
Observe that 25 = 52 and 16 = 24 as well as 80 = 24 × 5. Those denominators have
only 2s and 5s in their prime factorization. Meanwhile, 3 = 3 and 15 = 5 × 3 while
14 = 7 × 2. As you can see, those denominators have primes other than 2 and 5 in their
prime factorization. If you find this interesting, you should read “Using Sage to work with
Integers” on Page 145.

4 1. WELCOME TO SAGE!

sqrt(3.4)

will evaluate to 1.84390889145858, without need of using N().

Higher Order Roots:

Higher order roots can be calculated like exponents are. For example, to
find the sixth root of 64, do

64^(1/6)

and obtain that the answer is 2.

The Special Constants π and e:

Frequently in math we need the special constants π and e. It turns out that
π is built into Sage as “pi” (both letters lower case) and e is built in as “e”
(again, lower case).

You can do things like

numerical_approx(pi, prec=200)

to get many digits of pi, or likewise

numerical_approx(sqrt(2), prec=200)

to get a high-accuracy expansion of
√

2. These expansions are to 200 bits,
and basically if you want 100 digits, you can do 332 bits; 200 digits3 is 664
bits, and so on. You can also abbreviate with

N(sqrt(2), prec=200)

as we did earlier. That’s what the N() or n() function (they are the same)
is an abbreviation of, namely “numerical approx.”

Tab Completion:

Now would be a good time to explain a neat feature of Sage. If you are
typing a long command, like “numerical approx” and part way through
you forget the exact ending (is it approximation? approximations? appr?)
then you can hit the tab button. If only one command in the entire library
has that prefix, then Sage will fill in the rest for you. If it does not, then
you get a list of suggestions. It is a very useful feature when you cannot
remember exact commands. We will see other examples of built-in help
features in Section 1.10 on Page 47.

There’s another keyboard shortcut that I like. While I mentioned it
before, if you are tired of clicking “evaluate” all the time, you can just press
Shift and Enter at the same time. This does the same thing as clicking
“Evaluate.”

Is Sage Case-Sensitive?

You’ve probably had a situation in life where you entered your password
correctly, but discovered that it was rejected because you had the wrong

3This turns out to be because 10200 ≈ 2664, if you are curious.

1.2. USING SAGE WITH COMMON FUNCTIONS 5

capitalization. For example, perhaps you’ve left the “CAPS-LOCK” key
on. In any event, Sage does think of Pi as different from pi and Sin as
different from sin.

The only four exceptions known to me are i and n(), as well as True and
False. We will not make extensive use of True and False until Chapter 5,
but it is harmless to mention that you can also enter them as true and
false, and Sage recognizes these as the same. You may have heard that√
−1 is often referred to as “the imaginary number” and is denoted i.

Next, you can represent
√
−1 as either i or I and either way Sage will

know what you meant, namely
√
−1. If you’ve never heard of imaginary

numbers or i, then you can safely ignore this fact. Lastly, you can write
n(sqrt(2)) or N(sqrt(2)) and Sage treats those as identical.

So far as I am aware, these easements only apply to
√
−1 and n(), as

well as True and False as it turns out; in all other cases, capitalization
matters.

Exponentials:

Just as

2^3

gives you 23 and likewise

3^3

gives you 33, if you want to say e3 then just say

e^3

and that’s fine. Or for a decimal approximation you can do

N(e^3)

Also, it is worth mentioning sometimes books will write

exp(5 · 11 + 8) instead of e5·11+8

and Sage thinks that’s just fine. For example,

exp(5*11+8) - e^(5*11+8)

evaluates to 0. Don’t forget the asterisk between the 5 and the 11.

Logarithms:

Of course, Sage knows about logarithms—but there’s a problem. There are
several types of logarithm, including the common logarithm, the natural
logarithm, the binary logarithm, and the logarithm to any other base you
feel like using. In high school “log” refers to the common logarithm, and
“ln” to the natural logarithm. However, after calculus “log” refers to the
natural logarithm. Since Sage was mainly meant for university-and-higher
level work, then it is only natural they chose to use the natural logarithm
for “log.”

So to find the natural logarithm of 100 type
N(log(100))

6 1. WELCOME TO SAGE!

for the common logarithm of 100 type
N(log(100,10))

and for the binary logarithm of 100 type
N(log(100,2))

which of course generalizes. For example, to find the logarithm of 100 taken
base 42, type

N(log(100,42))

Note that Sage is quite good at getting exact answers. Try

log (sqrt(100^3), 10)

and you will obtain 3, the exact answer.

A Financial Example:

Suppose you deposit $ 5000 in an account that earns 4.5% compounded
monthly. Perhaps you are curious when your total will reach $ 7000. Using
the formula A = P (1 + i)n, where P is the principal, A is the amount at the
end, i is the interest rate per month, and n is the number of compounding
periods (number of months), we have

A = P (1 + i)n

7000 = 5000(1 + 0.045/12)n

7000/5000 = 5000(1 + 0.045/12)n

1.4 = (1 + 0.045/12)n

log 1.4 = log(1 + 0.045/12)n

log 1.4 = n log(1 + 0.045/12)

log 1.4

log(1 + 0.045/12)
= n

And so, we type into Sage

log(1.4)/log(1+0.045/12)

and get the response 89.8940609330801, so that we know 90 months will
be required. Therefore we write the answer 90 months, or even better, 7
years and 6 months.

This is an example of a computer-assisted solution to a problem. In
addition to that approach, Sage is also willing to solve the problem from
start to finish, with no human intervention. We’ll see that on Page 46.

Pure Mathematics and Square Roots:

Here are a couple of notes about square roots that would appeal to math
majors, or anyone who wants to work with the complex numbers. Most
students will want to skip this subsection, as well as the next one on complex
numbers, and continue with either “Using Sage for Trigonometry” on Page 7,
or with “Using Sage to Graph 2-Dimensionally” on Page 9.

1.3. USING SAGE FOR TRIGONOMETRY 7

In the spirit of absolute pomposity, you may know that (−2)2 = 4 as
well as 22 = 4. So if you want all the square roots of a number you can do

sqrt(4,all=True)

to obtain
[2, -2]

where the square brackets indicate a list. Any sequence of numbers separated
by commas and enclosed in square brackets is a list. We’ll see other examples
of lists throughout the book.

A Taste of the Complex Numbers:

If you know about complex numbers, you can do
sqrt(-4,all=True)

to obtain
[2*I, -2*I]

where the capital letter I represents
√
−1, the imaginary constant. As I

mentioned before, you can use the lowercase i instead of the capital one, if
you prefer.

While Sage is quite good at complex analysis, and can produce some
rather lovely plots of functions of a complex variable, we will not go into
those details here. The color plots of complex-value functions will be covered
in the electronic-only online appendix to this book “Plotting in Color, in
3D, and Animations,” available on my webpage www.gregorybard.com for
downloading.

1.3. Using Sage for Trigonometry

Some students are unfamiliar with trigonometry, or are in a course that has
nothing to do with trigonometry. If so, then they may confidently skip this
section and jump to the next one, which begins on Page 9.

The commands for trigonometry in Sage are very intuitive but it is
important to remember that Sage works in radians. So if you want to know
the sine of π/3, you should type

sin(pi/3)

and you will get the answer 1/2*sqrt(3). This is an exact answer, rather
than a mere decimal approximation. You will find that Sage is very oriented
toward exact rather than approximate answers. Sometimes this is irritating,
because if you ask for the cosine of π/12, then you would type

cos(pi/12)

and obtain 1/12*(sqrt(3) + 3)*sqrt(6) which is especially unsatisfying
if you want a decimal. Instead, if you type

N(cos(pi/12))

then you will obtain 0.965925826289, a rather good decimal approximation.

8 1. WELCOME TO SAGE!

You will discover that Sage is fairly savvy when it comes to knowing
when functions will go wrong. In particular, just try evaluating tangent at
one of its asymptotes. For example,

tan(pi/2)

will produce the helpful answer “Infinity.” The “rare” or “reciprocal” trig-
onometric functions of cotangent, secant, and cosecant, which are important
in calculus but annoying on hand-held calculators, are built into Sage. They
are identified as cot, sec, and csc.

The inverse trigonometric functions are also available. They are used
just like the trigonometric functions. For example, if you type

arcsin(1/2)

you will obtain
1/6*pi

as expected. Likewise
arccos(1/2)

produces
1/3*pi

The usual abbreviations are all known by and used by Sage. Here is a
complete list:

Math Notation: Long-form Command: Short-form Command:

sin−1 x arcsin(x) asin(x)

cos−1 x arccos(x) acos(x)

tan−1 x arctan(x) atan(x)

cot−1 x arccot(x) acot(x)

sec−1 x arcsec(x) asec(x)

csc−1 x arccsc(x) acsc(x)

You can also use Sage to graph the trigonometric functions. We’ll do that
in the section entitled “Using Sage to Graph 2-Dimensionally,” on Page 11.

Converting between Degrees and Radians:

We all remember from trigonometry class that to covert radians to degrees,
just multiply by 180/π, and to covert from degrees to radians, just multiply
by π/180. Accordingly, here’s what you type, to convert π/3 to degrees:

(pi/3) * (180/pi)

produces 60 while
60 * (pi/180)

produces 1/3*pi.
The way I like to remember this technique is that a protractor is 180

degrees, and the word “protractor” begins with “p,” while π is the Greek
“p.” For example, 90 degrees is half a protractor, and 60 degrees is a third
of a protractor. That’s why I can remember that they are π/2 and π/3.

1.4. USING SAGE TO GRAPH 2-DIMENSIONALLY 9

Likewise, if I see π/6, then I know that this is one-sixth of a protractor or
30 degrees.

1.4. Using Sage to Graph 2-Dimensionally

My favorite shape is the parabola, so let’s start there. Type

plot(x^2)

and you get a lovely plot of a parabola going in the range

−1 < x < 1

which is the default range for the plot command. It will bound the y-values
to whatever is needed to show those x-values. Here’s a screenshot of what
you should see:

Likewise you can do

plot(x^3-x)

which is nice and visually appealing, as you can see:

10 1. WELCOME TO SAGE!

For |x− 1/2| you can do

plot(abs(x-1/2))

which produces the following screenshot

What if you wanted a different x range? For example, to graph in
−2 < x < 2 you would type

plot(x^3-x, -2, 2)

and you get the desired graph, namely:

Now would be a good time to mention that you can save any of these
plots to a file after having Sage generate them. Just right-click on the
displayed graph in your web browser, and save the file to your computer.
You can then import the image into any report or paper that you might be
writing. A very cool graph is

plot(x^4 - 3*x^2+2,-2,2)

but notice the asterisk between 3 and x in “ 3*x ”. You will get an error if
you leave that out! The plot is

1.4. USING SAGE TO GRAPH 2-DIMENSIONALLY 11

Another minor sticking point is that for y = sin(t) you have to say
plot(sin(x))

or better yet
plot(sin(x),-10,10)

because plot is not expecting t, it expects x. The images that you get are

plot(sin(x)) plot(sin(x),-10,10)

In fact if you were to type
plot(sin(t))

you would see

NameError: name ’t’ is not defined

because in this case, Sage does not know what ’t’ means. An alternative
way of handling this is given on Page 104.

1.4.1. Controlling the Viewing Window of a Plot

Much of the time, the default viewing window of a graph is going to be
exactly what you wanted—but not always. The most common exception is
a function with vertical asymptotes. Here we are going to discuss how to
adjust the viewing window.

12 1. WELCOME TO SAGE!

Going “Off the Scale”:

Consider the plot of x3 from x = 5 to x = 10, which is given by

plot(x^3, 5, 10)

and as you can imagine, the function goes from 53 = 125 up to 103 = 1000,
thus the origin should appear very far below the graph. This is the plot:

Your hint that the location of the x-axis in the display is not where it
would be normally is that the axes do not intersect. This is to tell you that
the origin is far away. When the axes do intersect on the screen, then the
origin is (both in truth and on the screen) where they intersect.

Also, if you want to, you can hide the axes with

plot(x^3, 5, 10, axes=False)

and that produces

which is considerably less informative.

1.4. USING SAGE TO GRAPH 2-DIMENSIONALLY 13

To Force the Y-Range of a Graph:

If, for some reason, you want to force the y-range of a graph to be constrained
between two values, you can do that. For example, to keep −6 < y < 6, we
can do

plot(x^3-x, -3, 3, ymin = -6, ymax = 6)

in order to obtain

This is important, because normally Sage wants to show you the entire
graph. Therefore, it will make sure that the y-axis is tall enough to include
every point, from the maximum to the minimum. For some functions, either
the maximum or the minimum or both could be huge.

Plots of Functions with Asymptotes:

The way that Sage (and all computer algebra tools) computes the plot of
a function is by generating a very large number of points in the interval of
the xs, and evaluating the function at each of those points. To be precise,
if you want to graph f(x) = 1/x2 between x = −4 and x = 4, the computer
might pick 10,000 random values of x between −4 and 4 find the y values by
plugging them into f(x) and then finally drawing the dots in the appropriate
spots on the graph.

So if the graph has a vertical asymptote, then near that asymptote, the
value will be huge. Because of this, when you graph a rational function, be
sure to restrict the y-values. For example, compare the following:

14 1. WELCOME TO SAGE!

Plot 1 Plot 2

Plot 3 Plot 4

Plot 1:

plot(1/(x^3-x), -2, 2)

Plot 2:

plot(1/(x^3-x), -2, 2, ymin = -5, ymax = 5)

Plot 3:

plot(1/(x^3-x), (x,-2, 2), detect_poles=True,

ymin = -5, ymax = 5)

Plot 4:

plot(1/(x^3-x), (x,-2, 2), detect_poles=’show’,

ymin = -5, ymax = 5)

As you can see, the first is a disaster. The second one cuts off the
very-high and very-low y-values, but it keeps trying to connect the various
“limbs” of the graph. When you set “detect poles” to True, then it will
figure out that the pieces are not connected.

One minor point remains. Did you notice in the four plots above, that
’show’ is in quotes, but True is not in quotes? That’s because True and
False occur so often in math, that they are built-in keywords in Sage.
However, the ’show’ occurs less often, and therefore is not built in, and we
must put it in quotes.

1.4.2. Superimposing Multiple Graphs in One Plot

Now we’re going to see how to superimpose plots on each other. It turns out
that Sage thinks of this as “adding” the plots together, using a plus sign.

1.4. USING SAGE TO GRAPH 2-DIMENSIONALLY 15

An Example from Calculus: The Tangent Line

Suppose one wants to draw a picture of f(x) = x2 + 1 over the interval
−2 < x < 2 and the tangent line to that parabola at x = 1. Because
f(1) = 2 and f ′(1) = 2, we know the line has to go through the point (1, 2)
and will have slope 2. It is not hard to compute that the equation of that
line is y = 2x. The trick is that we want to graph them both at the same
time, in the same picture.

The command for this will be

plot(2*x, -2, 2) + plot(x^2+1, -2, 2)

and we will get the image:

As you can see, adding the two plots makes a super-imposition. The
plus sign tells Sage to draw the two curves on top of each other. Now, we
can do better by adding a dot at the point of tangency—the point (1, 2) and
perhaps some gridlines. The command for that will be

plot(2*x, -2, 2, gridlines=’minor’) + plot(x^2+1, -2, 2) +

point((1,2), size=30)

and we will get the image:

16 1. WELCOME TO SAGE!

As you can see, we added the point using the point command and this
too was superimposed using the plus sign. The gridlines=’minor’ gave
us the very satisfactory grid which can be so useful in preparing nice graphs
that are readable, for lab reports, classroom use, or papers for publication.
We will discuss other ways of making gridlines, as well as other ways of
annotating a graph, in Section 3.1 on Page 91. This specific graph will
appear in a highly annotated way on Page 95.

By the way, it is important that the above command, adding the two
plots plus a point, must be all on the same line. One cannot have a line
break. I cannot typeset it on one line because the page I am typing on is
not infinitely wide. Be sure there are no line breaks when you type those
commands in.

A More Intricate Example:

Suppose you were investigating polynomials, and you wanted to know the
effect of varying the last numeral in

y = (x− 1)(x− 2)(x− 5)

on its graph. (In other words, you want to know what happens if you change
the “5” in that equation to other numbers.) Then you could consider looking
at (x− 3) and (x− 4) as replacements for the (x− 5), as well as (x− 6) and
(x− 7). This could be done by

plot((x-1)*(x-2)*(x-3), -2, 10) + plot((x-1)*(x-2)*(x-4), -2,

10) + plot((x-1)*(x-2)*(x-5), -2,10) + plot((x-1)*(x-2)*(x-6),

-2, 10) + plot((x-1)*(x-2)*(x-7), -2, 10)

where I chose the domain, x = −2 until x = 10, arbitrarily. By the way,
when you enter that previous command in, it is important to note that it
must be on one (very long) line. If done correctly, we obtain

1.4. USING SAGE TO GRAPH 2-DIMENSIONALLY 17

It seems that I should zoom in a bit, to see more detail. If I wanted to
change the domain from −2 < x < 10 to perhaps 1 < x < 6, I would have
to change each of the -2s into 1s and each of the 10s into 6s. So I would
type

plot((x-1)*(x-2)*(x-3), 1,6) + plot((x-1)*(x-2)*(x-4), 1,

6) + plot((x-1)*(x-2)*(x-5), 1,6) + plot((x-1)*(x-2)*(x-6), 1,

6) + plot((x-1)*(x-2)*(x-7), 1,6)

and obtain as a result

There is an important issue here. We have to be careful to make the
changes correctly, and that somewhat challenging requirement is made much
worse because the code is hard to read. However, we will soon learn how
to make the code more readable, and this will also make the code easier to
change.

18 1. WELCOME TO SAGE!

In any case, now I can see better what that last numeral does. It controls
the location, or x-coordinate, of the last time that the curve crosses the x-
axis. As you can see, the plus sign among the plot commands means to
superimpose them.

There is a technicality here. You must not break a newline among the
plots and plus signs. Therefore, if you have problems getting those last
two commands to work, then check to see that you have no accidental “line
breaks” in the command. For Sage, these commands must be entered with-
out a line break, kind of like typing a long paragraph in an ordinary word
processor—you can wrap around the end of the line, but you cannot insert
a line break. This is an example of code that is functional, but not easy
to read, nor change, and certainly not easy to understand. We can fix this,
with a bit of effort. The various plot commands and their plus signs must
be strung together, like a paragraph, wrapping naturally from one line to
the next. You do not use the enter key to put each plot on its own line.
Thus, you cannot do:

plot((x-1)*(x-2)*(x-3), 1, 6)

+ plot((x-1)*(x-2)*(x-4), 1, 6)

+ plot((x-1)*(x-2)*(x-5), 1, 6)

+ plot((x-1)*(x-2)*(x-6), 1, 6)

+ plot((x-1)*(x-2)*(x-7), 1, 6)

which Sage thinks is five separate commands, instead of one big command.
However, there is a nice way out of this dilemma. You can type the

following, which produces the desired graph.

P1 = plot((x-1)*(x-2)*(x-3), 1, 6)

P2 = plot((x-1)*(x-2)*(x-4), 1, 6)

P3 = plot((x-1)*(x-2)*(x-5), 1, 6)

P4 = plot((x-1)*(x-2)*(x-6), 1, 6)

P5 = plot((x-1)*(x-2)*(x-7), 1, 6)

P = P1 + P2 + P3 + P4 + P5

P.show()

I’m sure we can all agree that this is much more readable code.

Further Graphing & Plotting Topics:

We have now only scratched the surface of plotting in Sage. There is a rich
library of types of plots and graphs which Sage can produce for you. An
entire chapter of this book is dedicated to “Advanced Plotting Techniques”
beginning on Page 91. If you’re curious about how Sage actually generates
the images, we talk about that on Page 265, but you might have to read
most of Chapter 5 to be able to follow that discussion.

By the way, you do not need to read that entire chapter in order. You
can simply use the index or table of contents to select exactly which type

1.5. MATRICES AND SAGE, PART ONE 19

of graph or plot you would like, and just read that tiny subsection of that
chapter.

1.5. Matrices and Sage, Part One

In this section we’ll learn how to solve linear systems of equations using ma-
trices in Sage. This section assumes that you’ve never worked with matrices
before in any way, or alternatively, that you have forgotten them. Experts in
linear algebra can skip to the Section 1.5.3 on Page 22. On the other hand,
some readers will have no specific interest in matrices, and can therefore
skip to Section 1.6 on Page 30, where they will learn how to define their
own functions in Sage.

1.5.1. A First Taste of Matrices

Let us suppose that you wish to solve this linear system of equations:

3x− 4y + 5z = 14

x+ y − 8z = −5

2x+ y + z = 7

First you would convert those equations into the following matrix:

A =

 3 −4 5 14
1 1 −8 −5
2 1 1 7


Notice that the coefficients of the xs all appear in the first column; the

coefficients of the ys all appear in the second column; the coefficients of the zs
all appear in the third column. The fourth column gets the constants. Thus
we have encapsulated and abbreviated all of the information of the problem.
Furthermore, observe that additions are represented by a positive coefficient,
and subtractions by a negative coefficient. By the way, the vertical line
between the third and fourth column is just decorative—its purpose is to
show that the fourth column is “special” in that it contains numbers, whereas
the other columns represent the coefficients of the variables x, y, and z.

Matrices have a special form called “Reduced Row Echelon Form” often
abbreviated as RREF. The RREF is, from a certain perspective, the simplest
description of the system of equations that is still true. The Reduced Row
Echelon Form of this matrix A is 1 0 0 3

0 1 0 0
0 0 1 1



20 1. WELCOME TO SAGE!

We can translate this literally as

1x+ 0y + 0z = 3

0x+ 1y + 0z = 0

0x+ 0y + 1z = 1

or in simpler notation

x = 3 y = 0 z = 1

which is the solution. You should take a moment now, plug in these three
values, and see that it comes out correct.

1.5.2. Complications in Converting Linear Systems

You might be looking at the previous discussion and imagine that what
we’re doing is a kind of silver-bullet, quickly capable of solving any of a
large number of extremely tedious problems that take (with a pencil) a very
long time.

Indeed, matrix algebra is a silver bullet, now that we have comput-
ers. Prior to the computer, large linear algebra problems were considered
extremely unpleasant. Yet, now that we have computers, and because com-
puters can carry out these operations essentially instantly, this topic is a
great way to rapidly solve enormous systems of linear equations. In turn,
skilled mathematicians can address important problems in science and in-
dustry, because real-world problems often have many variables.

This topic, however, is better described as “semi-automatic” rather than
“automatic.” The reason I say that is because the human must be very
careful to first convert the word problem into a system of linear equations.
We will not cover that here. The second step is to convert that system into a
matrix, and that isn’t quite trivial. In fact, it is often the case that student
errors occur in this step, and so we will invest a bit of time with a detailed
example.

Consider this system of equations:

2x− 5z + y = 6 + w

5 + z − y = 0

w + 3(x+ y) = z

1 + 2x− y = w − 3x

As it turns out, this system of equations has the following traps:

• In the first equation, the variables are out of order, which is ex-
tremely common. Very often, both students and professional math-
ematicians will fail to notice this, and put the wrong coefficients
in the wrong places. You can use any ordering that you want, so
long as you use the same ordering for every equation. However, to
avoid making an error, mathematicians usually put the variables in
alphabetical order.

1.5. MATRICES AND SAGE, PART ONE 21

• Also in the first equation, the w is on the wrong side, and we must
move it to the left of the equal sign. It is necessary that all the
variables end up on one side of the equal sign, and all the numbers
on the other side of the equal sign. With these two repairs, the first
equation is now

−w + 2x+ y − 5z = 6

• The second equation has the constant on the wrong side, and so
we must move it across the equal sign, remembering to negate it.
• As if that were not enough, both x and w are missing in the second

equation. We treat this as if the coefficients were zero. With these
two repairs, the second equation is now

0w + 0x− y + z = −5

• The third equation has parentheses—that’s not allowed. We have
to remember that 3(x+ y) = 3x+ 3y.
• Also in the third equation, the z is on the wrong side. We must

take care to change +z into −z when crossing the equal sign.
• A third defect in the third equation is that there is no constant.

We treat this as a constant of zero. Correcting these three issues,
the third equation becomes

w + 3x+ 3y − z = 0

• Now the real delinquent is the fourth equation. We have w on the
wrong side, and what is worse is that there are two occasions of
x. When we move the −3x from the right of the equal sign to the
left, it becomes +3x and combines with the +2x that was already
there, to form 5x. As if that were not enough, the constant is on
the wrong side. Last but not least, z is entirely absent. Correcting
all these defects, we have

−w + 5x− y + 0z = −1

With these (modified) equations in mind, we have the matrix:

B =


−1 2 1 −5 6
0 0 −1 1 −5
1 3 3 −1 0
−1 5 −1 0 −1


The RREF of that matrix would be tedious to find by hand. However,

it would be far worse to solve that system of equations by hand without ma-
trices, using ordinary algebra. However, using Sage, we will easily compute
the RREF in the next subsection. For now, it turns out that the answer is

w = −107/7 x = −12/7 y = 54/7 z = 19/7

which you can easily verify now if you like.

22 1. WELCOME TO SAGE!

1.5.3. Doing the RREF in Sage

This subsection is going to tell you how to compute the RREF of a matrix,
presumably with the goal of solving some linear system of equations. Doing
this in Sage requires only four steps, the last of which is optional. First,
we’re going to define the matrix

A =

 3 −4 5 14
1 1 −8 −5
2 1 1 7


which came from the previous subsection. As you can see, it has 3 rows and
4 columns. We’ll do that with the Sage command

A = matrix(3, 4, [3, -4, 5, 14, 1, 1, -8, -5, 2, 1, 1, 7])

The key to understanding that Sage command is to see that the first
number is the number of rows, followed by the number4 of columns. Then
follows the list of entries, separated by commas, and enclosed in brackets.

By the way, keep this definition of the matrix A in the Sage Cell for as
long as you are working with it. Do not erase it until you are done with
it. Every time you hit evaluate, you are sending whatever is in the Sage
Cell to the Sage Cell Server for evaluation. The server won’t remember the
definition of the matrix A if you remove it. In contrast, Sage Cloud (See
Appendix B), has much more permanent memory.

Notice that Sage does not respond when this command is given. That’s
because we told it what the matrix A is but we didn’t give it anything to
do to A.

The second step is to verify that the matrix you typed was the matrix
that you had hoped to enter. This step is not avoidable, as typos are ex-
tremely common. To do this, just type print A on a line by itself, below
the definition of the matrix A. Then click Evaluate. The matrix is displayed
and you can verify that you have typed what you had wanted to type.

The third step is that you want to compute the RREF or “Reduced Row
Echelon Form.” This is done with the command

print A.rref()

and Sage tells you the Reduced Row Echelon Form, or 1 0 0 3
0 1 0 0
0 0 1 1


The fourth, and optional step, is to check your work, but I highly rec-

ommend it! First we type (on its own line)
print 3*3 + -4*0 + 5*1

and learn that the answer is 14, as expected. Next we type

4This is how I remember: Columns, such as on a bank, Congress, or a Greek temple,
are vertical. Rows, by process of elimination, are horizontal. But do we enter the rows
first, or the columns first? I always think “RC Cola,” a minor brand of soda, which
reminds me rows-first-columns-second. Thankfully, there does not exist a “CR Cola.”

1.5. MATRICES AND SAGE, PART ONE 23

print 1*3 + 1*0 - 8*1

and learn that the answer -5, as expected. The last equation is checked
similarly.

Note that it is crucial to check all three equations! Otherwise, you’d fail
to detect the “imposter” solution

x = 30 y = 29 z = 8

which satisfies the first two equations, but not the third one.
Now let’s consider the “complicated” example from the previous subsec-

tion. It was

B =


−1 2 1 −5 6
0 0 −1 1 −5
1 3 3 −1 0
−1 5 −1 0 −1


and we can enter that into Sage with

B = matrix(4, 5, [-1, 2, 1, -5, 6, 0, 0, -1, 1, -5, 1, 3, 3,

-1, 0, -1, 5, -1, 0, -1])

With the matrix B being built out of a very long list of numbers, we
should be very careful that we’ve typed those correctly, omitting none and
duplicating none. We check the correctness of B by typing print B alone
on its own line, and see that we have entered that which we had intended
to enter.

Before we continue, I’d like to share with you a useful and easy bit of
notation. Sometimes we wish to refer to a position inside the matrix. For
example, the 6 in the first row, fifth column of B can be written as B15.
Likewise, the 5 in the fourth row, second column of B can be written as
B42. Similarly, the two -5s are located at B14 and B25. Remember, the row
comes first, and the column comes second, just like RC Cola.

In Sage, the naming of the coordinates in matrix entries starts at 0 and
not at 1. This means that the upper-left hand corner is B[0][0] in Sage,
but B11 in mathematics. Similarly, B14 is typed in as B[0][3], and B23 is
typed in as B[1][2]. This anomaly is something that Sage inherited from
the computer language Python, and it cannot be changed since Sage runs
over Python.

By the way, an alternative way of entering a fairly large matrix is as
follows:

B = matrix([[-1, 2, 1, -5, 6], [0, 0, -1, 1, -5],

[1, 3, 3, -1, 0], [-1, 5, -1, 0, -1]])

The above code is a list of lists. Each list of five numbers enclosed in
brackets and separated by commas represents one row; then there are four
such lists, separated by commas and enclosed by brackets, to represent the
entire matrix. Since this format gives away the number of rows and columns,
we do not have to put the “4, 5” to inform Sage that B has 4 rows and 5

24 1. WELCOME TO SAGE!

columns. You can feel free to use which ever format you might happen to
feel more comfortable with.

Now that B has been entered (by either method) we should add the
command print B.rref() on its own line, and we learn that the RREF is

1 0 0 0 −107/7
0 1 0 0 −12/7
0 0 1 0 54/7
0 0 0 1 19/7


which gives the final answer of

w = −107/7 x = −12/7 y = 54/7 z = 19/7

for the original system of equations. Now we must check our work. For
example, we check the first equation with

print 2*(-12/7) - 5*(19/7) + 54/7

and
print 6 + -107/7

both of which come out to -65/7. The point is not that they come out
to -65/7, but rather that they come out equal. Thus the first equation is
satisfied. We check the other three equations similarly.

We really do have to plug each of the four values into each of the four
equations, by the way. For example, the “imposter” solution

w = −139/7 x = −8/7 y = 64/7 z = 29/7

satisfies the first three of those equations, but fails to satisfy the last one.
If you happened to read Section 1.5.2, you will recall that we did quite

a lot of work to get B. Those many steps might have contained an error if
we were sloppy. That’s another reason that we should check our work.

1.5.4. Basic Summary

We’ve now learned how to use the matrix and rref commands to compute
the RREF of a matrix, and therefore solve a linear system of equations. To
do all the steps at once, I will often type

B = matrix(4, 5, [-1, 2, 1, -5, 6, 0, 0, -1, 1, -5, 1, 3, 3,

-1, 0, -1, 5, -1, 0, -1])

print "Question:"

print B

print "Answer:"

print B.rref()

The lines containing print "Question:" and print "Answer:" are en-
tirely optional, but help make the output more readable. They also encour-
age me to check that I had actually entered the matrix which I had intended

1.5. MATRICES AND SAGE, PART ONE 25

to enter, without any typos. Somehow, I almost always make a typograph-
ical error, which I have to go back and correct. The output produced is
below:

Question:

[-1 2 1 -5 6]

[0 0 -1 1 -5]

[1 3 3 -1 0]

[-1 5 -1 0 -1]

Answer:

[1 0 0 0 -107/7]

[0 1 0 0 -12/7]

[0 0 1 0 54/7]

[0 0 0 1 19/7]

1.5.5. The Identity Matrix

Let’s look at these RREFs that we’ve computed so far. Do you see a pattern
in them? Or I should say, a pattern in all columns but the last column?

 1 0 0 3
0 1 0 0
0 0 1 1

 and


1 0 0 0 −107/7
0 1 0 0 −12/7
0 0 1 0 54/7
0 0 0 1 19/7


We can see that all the columns (excepting the last column) have zeros

everywhere, except a very noticeable diagonal of ones. This pattern (of zeros
everywhere but ones in the A11, A22, A33, . . . , positions) is a pattern that
occurs extremely often. Unsurprisingly, it has a name—mathematicians call
this “the identity matrix.”

Consider when you are forced to show “ID,” for example when being
pulled over for a speeding ticket or when trying to enter a bar. The ID
quickly displays your vital facts, such as your name, your birthdate, your
height, your gender, your address, and so forth. Likewise, the identity matrix
displays the vital facts about a system of linear equations. You can read the
values of the variables off, by simply reading the last column.

1.5.6. A Challenge to Practice by Yourself

Using Sage, solve the following linear system of equations. Check your
answers with a hand calculator.

3481x+ 59y + z = 0.87

6241x+ 79y + z = 0.61

9801x+ 99y + z = 0.42

26 1. WELCOME TO SAGE!

Note: this problem might seem artificial, but it actually an applied prob-
lem which we will revisit shortly. Like many application-based problems, the
answers have decimal points, which hopefully should not frighten you. We’ll
see the answer shortly.

1.5.7. Vandermonde’s Matrix

In economics or in business, one often speaks a great deal about the price-
demand curve. After all, as the price of a product goes up, then the demand
for it should fall and as the price decreases, the demand should go up, at
least under standard conditions.

Sometimes it would be useful to know the curve but it can usually only
be computed by surveying potential customers. The standard technique is to
find 2000 people, show each of them the product, and ask them if they would
buy it or not. They get the product5 for free in return for participating in
the survey. The key is that of those 2000 people, perhaps 20 different prices
would be used, each price being shown to 100 people.

That process will deliver 20 data points, which is often totally sufficient.
However, sometimes it is better to have an actual function. Typically, a
quadratic function is sought. There are good reasons for this, but it would
be a digression6 to explore them here. Imagine that a friend of yours with a
startup company has done such a survey, but with 3 prices and 300 people,
for some snazzy new product.

• At the price of $ 59, the survey says that 87% would buy it.
• At the price of $ 79, the survey says that 61% would buy it.
• At the price of $ 99, the survey says that 42% would buy it.

Every quadratic function can be written in the form

f(x) = ax2 + bx+ c

but the question becomes: how can we find a, b, or c?
With this in mind, and assuming f(x) models the price-demand relation-

ship well, then it really must be the case that f(59) = 0.87, f(79) = 0.61,
and f(99) = 0.42. With that in mind, then we could write the following
equations

a(592) + b(59) + c = 0.87

a(792) + b(79) + c = 0.61

a(992) + b(99) + c = 0.42

Surprisingly, these equations are linear, which is not necessarily expected
since we are working with a quadratic function. All we must do is write the

5Unsurprisingly, this technique is more common in small consumer electronics or food
items, and less common among luxury sports-car manufacturers.

6Let it be said that fitting high-degree polynomials to data points is entirely feasible,
but extremely unwise, due to a phenomenon called “over fitting.”

1.5. MATRICES AND SAGE, PART ONE 27

matrix down:  592 59 1 0.87
792 79 1 0.61
992 99 1 0.42


and ask Sage to compute the RREF. However, you’ve already done that
yourself! You already computed the solution

a = 0.0000875 b = −0.025075 c = 2.0448375

as practice, on Page 25 as Section 1.5.6.
Finally, we conclude that the function is

f(p) = 0.0000875p2 − 0.025075p+ 2.0448375

The graph of this function is given below:

If you are curious, the code which produced that plot was

f(x) = 0.0000875*x^2 - 0.025075*x + 2.0448375

plot(f, 55, 130, gridlines=’minor’) + point([59, 0.87],

size=50) + point([79, 0.61], size=50) + point(

[99, 0.42], size=50)

The general technique of fitting a degree-n polynomial to n+1 points us-
ing a matrix is due to Alexandre-Théophile Vandermonde (–), and
therefore the matrices are called Vandermonde Matrices after him. For ex-
ample, to fit a fourth-degree polynomial to five data points (x1, y1), (x2, y2),
. . . , (x5, y5), we would use the matrix:

(x1)
4 (x1)

3 (x1)
2 (x1) 1 y1

(x2)
4 (x2)

3 (x2)
2 (x2) 1 y2

(x3)
4 (x3)

3 (x3)
2 (x3) 1 y3

(x4)
4 (x4)

3 (x4)
2 (x4) 1 y4

(x5)
4 (x5)

3 (x5)
2 (x5) 1 y5



28 1. WELCOME TO SAGE!

1.5.8. The Semi-Rare Cases

Previously, our examples gave us one unique solution. Now we’re going to
examine the two semi-rare cases. These occur if there is one row of all zeros
at the bottom of the RREF, ending in either a non-zero number, or ending
in zero. The system of equations is

x+ 2y + 3z = 7

4x+ 5y + 6z = 16

7x+ 8y + 9z = 24

That results in the matrix

C1 =

 1 2 3 7
4 5 6 16
7 8 9 24


and that we shall enter into Sage with

C1 = matrix(3,4, [1, 2, 3, 7, 4, 5, 6, 16, 7, 8, 9, 24])

Next, to find the RREF we type
C1.rref()

and receive back

[1 0 -1 0]

[0 1 2 0]

[0 0 0 1]

This translates into

x− z = 0

y + 2z = 0

0 = 1

The bottom equation says 0 = 1, which is clearly not true! There is no
way to satisfy the requirement that 0 = 1. Therefore, this equation has no
solutions. Instead of “the answer” being a solution, a list of solutions, or
infinitely many solutions, the answer is the sentence “This linear system of
equations has no solutions.” That will be the outcome whenever the RREF
has a row with all zeros except the last column, which is a non-zero number.
Whenever you see a row with all zeros, except in the last column where a
number other than zero is found, then you must remember that the system
has no solutions.

Another interesting case is to change the 24 in the last equation to 25.
That results in the matrix

C2 =

 1 2 3 7
4 5 6 16
7 8 9 25


and that we shall enter into Sage with

C2 = matrix(3,4, [1, 2, 3, 7, 4, 5, 6, 16, 7, 8, 9, 25])

1.5. MATRICES AND SAGE, PART ONE 29

Now, to find the “solution,” we type
C2.rref()

and receive back

[1 0 -1 -1]

[0 1 2 4]

[0 0 0 0]

As you can see, this RREF has a row of all zeros, ending in a zero. That
usually indicates infinitely many solutions, a point we will clarify shortly.
Some instructors allow you to write “infinitely many solutions” and in cer-
tain application problems you would not care to provide a way of saying
what those solutions are.

However, some of the time, you’d like to know what the solutions are.
This is especially true in geometry-related problems. In any case, you can’t
make a list, because there infinitely many solutions. Often, even though
the solution space is infinite, it turns out that it has what mathematicians
call “one degree of freedom.” This means that there’s a free variable, which
you can set to whatever value that you want. However, once you have done
so, all the other variables are determined by this choice. That process is
explained in Appendix D, along with many other facts about linear systems
that have infinitely many solutions.

When are there Infinitely Many Solutions?

So what does a row of zeros really tell us? Most of the time, your system
of equations will have two equations in two unknowns; three equations in
three unknowns; four equations in four unknowns; or five equations in five
unknowns, and so forth. The technical term for this is an “exactly-defined”
linear system. An exactly-defined linear system results in a 2 × 3, 3 × 4,
4 × 5, 5 × 6, or n × (n + 1) matrix. The “rule of thumb” that I’m about
to present will work whenever there are an equal number of equations as
unknowns, which means that the system is exactly defined, i.e. there is one
more column than the number of rows.

Here’s the rule of thumb: If we see the tell-tale sign of “no solutions,”
then we ignore all other information, and declare “no solutions.” Barring
that, if there is a row of zeros, then there will be infinitely many solutions.

However, be warned! This rule does not work if there are “too few” or
“too many” equations. If there are too many equations (too many rows),
the system is said to be “over defined.” If there are too many variables (too
many columns), the system is said to be “under defined.” For example, in
Section D.3 on Page 312, I will list some counterexamples that demonstrate
that this rule of thumb is false for matrices that are over defined or under de-
fined. If you are curious, under-defined systems of linear equations come up
in some cool analytic geometry questions, and over-defined systems of linear
equations come up in cryptanalysis—and were used in my PhD dissertation.

30 1. WELCOME TO SAGE!

Finally, it should be noted that in Appendix D, you can learn the rela-
tively straight-forward technique that maps out exactly how to handle linear
systems of equations with infinitely many solutions, regardless of the num-
ber of rows and columns. The trick there is only slightly more complicated,
but it always works. Furthermore, it gives you formulas for producing as
many solutions from the set of infinitely many solutions, as you might want
to generate. You can also use those formulas for other purposes—for ex-
ample, to test if a candidate solution is actually one of the infinitely many
solutions.

Please do not imagine that linear systems with infinitely many solutions
are terribly rare—they do occasionally come up in applications. However,
they are uncommon enough that we will not burden you with those details
yet, but we will wait until Appendix D.

1.6. Making your Own Functions in Sage

It is extremely easy to define your own functions in Sage. To me, this is
one of the most brilliant design features of Sage, that the creators made
functions very easy to use. You can make your own function using exactly
the symbols that you would normally use in writing the function down with
your pencil on homework or writing on the whiteboard.

Defining a Function:

For example, if you want to define f(x) = x3 − x then you type

f(x) = x^3-x

f(2)

where we have defined f(x) and asked it the value of f(2). You could
instead ask for f(3), or any other number. Likewise if you wanted to define

g(x) =
√

1− x2 you would type

g(x) = sqrt(1-x^2)

g(1/4)

where we have defined g(x) and asked what g(1/4) evaluates to. You could
just as easily ask for g(1/2) or any other number in the domain of g.

To evaluate several values, you can use the print command.

g(x) = sqrt(1-x^2)

print g(0.1)

print g(0.01)

print g(0.001)

print g(0.0001)

print g(0.00001)

print g(0.000001)

1.6. MAKING YOUR OWN FUNCTIONS IN SAGE 31

If perhaps you happen to have started calculus, you can see that the
above output would help you evaluate

lim
x→0+

g(x) = 1

numerically, or help confirm your algebraic answer. If you haven’t studied
calculus, then you can ignore this remark!

Plotting Functions:

Now that we’ve defined f(x) and g(x), we can plot them with

f(x) = x^3-x

plot(f, -2, 2)

you get the expected plot

Likewise if you type

g(x) = sqrt(1-x^2)

plot(g, 0, 1)

which is equivalent to

g(x) = sqrt(1-x^2)

plot(g(x), 0, 1)

then you get the graph of g(x) on 0 ≤ x ≤ 1.
Last but not least, if you type

g(x) = sqrt(1-x^2)

plot(g)

which is rather abbreviated—omitting the interval of the x-axis that you
want—then Sage will assume that you want −1 ≤ x ≤ 1, by default. This
produces the plot

32 1. WELCOME TO SAGE!

Note that you really do have to keep the definitions of f(x) or g(x)
in the window and written out each time you hit “Evaluate.” This is a
feature of the Sage cell server. It has amnesia, and treats each press of the
button “Evaluate” as its own separate mathematical universe. This is for the
beginner’s benefit, because it makes the correcting of minor typographical
errors very easy. You just fix the error, click “Evaluate” and all is well. Sage
Cloud works just slightly differently, as will be explained on Page 299.

Using Intermediate Variables:

Sometimes you’ll be using the same value a lot, and you want to store it
somewhere. For example, if you type 355/113 a lot, then you can type

k=355/113

which silently stores the value 355/113 in the variable k. You can use it in
any later line of the Sage cell-server window, such as

k=355/113

print 2+k

print 1+k

which displays the correct values of 581/113 and 468/113. If you go back and
change the value of k however, you have to make sure you use the “evaluate”
button to re-evaluate your formulas.

Also, if you replace 2+k with 2.0+k then you get decimal approximations
instead. If a mathematical statement is written entirely in terms of integers
and rational numbers, Sage will provide an exact answer. If a decimal is
introduced, it will provide a decimal approximation instead.

The intermediate variables technique is great for things in physics like
the acceleration due to gravity, or the speed of light, which do not change
during a problem.

As it turns out, this particular k is an approximation of π, kind of like
22/7 but much better. If we wanted to find the relative error of k as an

1.6. MAKING YOUR OWN FUNCTIONS IN SAGE 33

approximation of π we would remember the formula

relative error =
approximation− truth

truth
and type

k=355/113

N((k-pi)/pi)

and learn that the relative error is around 84.9 parts per billion. Not bad.
This approximation was found by the Chinese Astronomer Zu Chongzhi,
also known as Tsu Ch’ung-Chih. We can compare 355/113 to 22/7 with

N((22/7-pi)/pi)

and learn that this much more common approximation of π as 22/7 has a
relative error around 402.5 parts per million. That’s much worse! In fact,
22/7 is 4740.9 times worse, so it is kind of a pity that we do not teach
students 355/113, but instead we teach them 22/7.

Composition of Functions:

You can also compose two functions very easily in Sage. Consider the fol-
lowing two functions

f(x) = 3x+ 5 and g(x) = x3 + 1

Perhaps we wish to explore f(g(x)). The easy way to do this is to define
a third function, h(x) = f(g(x)). Then perhaps we might want to print that
function, and the values of h(x) at x = 1, x = 2, and x = 3. The Sage code
for this is straight forward:

f(x) = 3*x + 5

g(x) = x^3 + 1

h(x) = f(g(x))

print h(x)

print h(1)

print h(2)

print h(3)

That produces the output

3*x^3 + 8

11

32

89

as desired. However, if we replace the third line with h(x) = g(f(x)), then
we get completely different output

(3*x + 5)^3 + 1

513

1332

2745

34 1. WELCOME TO SAGE!

Of course, there’s no reason to expect f(g(x)) = g(f(x)) in general. The
way to see that in this specific case is to work out the two functions using
algebra. We can compute

f(g(x)) = 3(g(x)) + 5

= 3(x3 + 1) + 5

= 3x3 + 3 + 5

= 3x3 + 8

which is completely different than

g(f(x)) = g(3x+ 5)

= (3x+ 5)3 + 1

= 27x3 + 135x2 + 225x+ 125 + 1

= 27x3 + 135x2 + 225x+ 126

Multivariate Functions:

This section has dealt with functions of one variable. Sage can very easily
and simply handle functions of multiple variables. For example,

f(x, y) = (x4 − 5x2 + 4 + y2)2

We’ll cover this in detail in Section 4.1 on Page 127.

1.7. Using Sage to Manipulate Polynomials

Now we’re going to explore some uses of functional notation, from the pre-
vious section, to polynomials. First, let’s see that Sage can add polynomials
very easily. We’re going to explore the following polynomials.

a(x) = x2 − 5x+ 6

b(x) = x2 − 8x+ 15

If we type the following code

a(x) = x^2 - 5*x + 6

b(x) = x^2 - 8*x + 15

a(x) + b(x)

we get the correct answer of 2x2 − 13x + 21. Note, it is very important to
remember the asterisk between the 5 and the x as well as the 8 and the x.

Similarly, if you change the + sign between a(x) and b(x) into a - sign,
then we also get the correct answer of 3x − 9. As you can imagine, the
product can be conveniently calculated as well:

a(x) = x^2 - 5*x + 6

b(x) = x^2 - 8*x + 15

1.7. USING SAGE TO MANIPULATE POLYNOMIALS 35

a(x)*b(x)

but this provides the unfinished yet undeniably true answer

(x^2 - 5*x + 6)*(x^2 - 8*x + 15)

Instead, we can do the following

a(x) = x^2 - 5*x + 6

b(x) = x^2 - 8*x + 15

g(x) = a(x)*b(x)

g.expand()

and we get g(x) written without parentheses. In computer algebra, that’s
called “expanded form.” The expanded form of our g(x) happens to be

x |--> x^4 - 13*x^3 + 61*x^2 - 123*x + 90

The symbol |--> means “evaluates to.” What Sage is telling you here
is that g(x) is a function that sends x to x4 − 13x3 + 61x2 − 123x+ 90.

Instead, we can write g.factor() in place of g.expand() in which case
we get the following output:

(x - 2)*(x - 3)^2*(x - 5)

You can also factor more directly with

a(x) = x^2 - 5*x + 6

factor(a(x))

and get the correct answer of (x− 2)(x− 3). Alternatively we can be even
more direct by typing

factor(x^2 - 8*x + 15)

to obtain (x− 3)(x− 5).
You can also compute the “greatest common divisor” or gcd of two

polynomials. For example, the following code

a(x) = x^2 - 5*x + 6

b(x) = x^2 - 8*x + 15

gcd(a(x), b(x))

provides the correct answer of (x − 3). Of course, we knew that from the
factorizations that we found earlier. The common factor of (x − 2)(x − 3)
and (x− 3)(x− 5) is clearly (x− 3).

It should be noted that these examples were trivial because we used
quadratic polynomials. The following polynomial is one that I would not
want to factor by hand—though, admittedly, the integer roots theorem7

7If f(x) is a polynomial with all integer coefficients, then any integer root must be
a divisor of the constant term of f(x). Most numbers have a modest number of divisors,
so it is relatively easy to simply check each of them, and thereby have a complete list
of all the integer roots of f(x). Note that this works even for quintic and higher degree
polynomials, which are otherwise extremely difficult to work with. There is also a “rational
roots theorem,” but we will not discuss that here.

36 1. WELCOME TO SAGE!

a(x) = x^2 - 5*x + 6

b(x) = x^2 - 8*x + 15

f(x) = a(b(x))

print "Direct:"

print f(x)

print "Expanded:"

print f.expand()

print "Factored:"

print f.factor()

Figure 1. Some Sage Code to Explore Composing Two Functions

would produce the correct answer using only a pencil and a great deal of
human patience

factor(x^4 - 60*x^3 + 1330*x^2 - 12900*x + 46189)

Speaking of the integer roots theorem, we could type factor(46189)

and get 11 * 13 * 17 * 19 to help us find roots of that quartic polynomial.
The factor command deals with both factoring a polynomial and factoring
an integer. The command divisors(46189), as an alternative, lists all the
positive integers which divide 46,189. Naturally, that’s a longer list than
factor, which only would list the prime divisors (and their exponents, if
any). Compare factor(2048) and divisors(2048), if you like.

The composition of functions is also not a problem. The code given in
Figure 1 will compose two polynomials and produce the answer in three
forms. It is noteworthy that this is our first real “program” in Sage, in
the sense that it is the first time that we’ve used more than two or three
commands at once.

In particular, our program produces the output:

Direct:

(x^2 - 8*x + 15)^2 - 5*x^2 + 40*x - 69

Expanded:

x |--> x^4 - 16*x^3 + 89*x^2 - 200*x + 156

Factored:

(x^2 - 8*x + 13)*(x - 2)*(x - 6)

The above code demonstrates how it can be very useful to label parts of
your output with print commands if you’re outputting more than one or
two items. Such labeling (sometimes called “annotating the output”) is a
good general practice as you learn to tackle more and more complex tasks
in Sage.

Just as we saw at the end of Section 1.6, you get a different answer if
you change f(x) = a(b(x)) into f(x) = b(a(x)). Go ahead, give it a try,
and see for yourself!

1.8. USING SAGE TO SOLVE PROBLEMS SYMBOLICALLY 37

1.8. Using Sage to Solve Problems Symbolically

When we say that a computer has solved a problem for us, that can come
out to be in one of two flavors: symbolically, or numerically. When we solve
numerically, we get a decimal expansion for a (very good) approximation of
the answer. When we solve symbolically, we get an exact answer, often in
terms of radicals or other complicated functions. It is a matter of saying if
the solutions to

x2

2
− x− 2 = 0

are 1 +
√

5 and 1−
√

5 or saying that they are

−1.23606797749979 and 3.23606797749979

The former is an example of a symbolic solution, and the latter a numer-
ical solution. Often, a numerical answer is desired. However, if the answer
is a formula, then a symbolic solution is the only way to go. This section
is about symbolic solution, and then the next section is about numerical
solution.

1.8.1. Solving Single-Variable Formulas

First, let’s try solving some single-variable problems. We can type

solve(x^2 + 3*x+2, x)

and then we obtain

[x == -2, x == -1]

It is important to remember the asterisk! To be precise, to type

solve(x^2 + 3x+2, x)

would be wrong, because of the absence of the asterisk between the “3” and
the “x.” Another, more illustrative example of a symbolic computation is

solve(x^2+9*x+15==0,x)

which outputs

[x == -1/2*sqrt(21) - 9/2, x == 1/2*sqrt(21) - 9/2]

By the way, do you notice how the solutions are in a comma-separated
list, enclosed in square brackets? That’s an example of a list, in notation
that Sage inherited from the computer language Python.

One way to really see what symbolic versus exact is about is to compare

3+1/(7+1/(15+1/(1+1/(292+1/(1+1/(1+1/6))))))

which returns 1,354,394 / 431,117 to

N(3+1/(7+1/(15+1/(1+1/(292+1/(1+1/(1+1/6)))))))

which returns 3.14159265350241. That could easily be mistaken for π. In
fact it is really close to π with relative error 2.78× 10−11.

There is no restriction to polynomials. You can also type

38 1. WELCOME TO SAGE!

var(’theta’)

solve(sin(theta)==1/2, theta)

to get

[theta == 1/6*pi]

but note that there are many values for which sin θ = 1/2. For example,

θ ∈
{
. . . ,−31π

6
,−23π

6
,−19π

6
,−11π

6
,−7π

6
,
π

6
,

5π

6
,

13π

6
,

17π

6
,

25π

6
,

29π

6
, . . .

}
are several values of θ that solve sin θ = 1/2.

Declaring Variables:

You might be confused to see that var command above. The idea is that
you need to tell Sage that this variable is not yet known. We’ve used vari-
ables before, but that’s because we had assigned values to them. When you
want a variable to represent some unknown quantity, you must use var.
The variable x is always pre-declared, you do not need to declare it—Sage
assumes that x is an unknown.

1.8.2. Solving Multivariable Formulas

Now we’re going to use Sage to re-derive the quadratic formula. First we
must declare our variables with:

var(’a b c’)

and then we type

solve(a*x^2 + b*x + c == 0, x)

and receive back

[x == -1/2*(b + sqrt(-4*a*c + b^2))/a,

x == -1/2*(b - sqrt(-4*a*c + b^2))/a]

which has some terms in an unusual order but is undoubtedly correct. Once
again, the square brackets and comma indicate a list in Sage, something
which Sage inherited from the computer language Python.

Of course, you probably know the quadratic formula very well. (At
least I hope you do!) However, you probably do not know Cardano’s Cubic
Formula. In Section 1.8.5 on Page 43, we’ll see how Sage can “rediscover”
Cardano’s formula on the spot when similarly challenged.

Declaring Several Variables at Once:

By the way

var(’a b c’)

is merely an abbreviation for

var(’a’)

var(’b’)

var(’c’)

1.8. USING SAGE TO SOLVE PROBLEMS SYMBOLICALLY 39

Also note that the following for forms are equivalent
var("a, b, c") var("a b c") var(’a b c’) var(’a, b, c’)

and you can use which ever one you prefer.

1.8.3. Linear Systems of Equations

You can solve several equations simultaneously, whether they are linear or
non-linear. An easy case might be to solve

x+ b = 6

x− b = 4

which would be done by typing

var(’b’)

solve([x+b == 6, x-b == 4], x, b)

Again, note the use of square brackets and commas to form a list in
Sage. You can enclose any data with [and], and separate the entries with
commas, to make a list.

Also, it is important to point out that there is no harm in “declaring” b
twice. Two var commands do no harm to each other. On the other hand,
there is also no need to “declare” b twice, as once it is declared, Sage will
remember that it is a variable.

A more typical linear system might be

9a+ 3b+ 1c = 32

4a+ 2b+ 1c = 15

1a+ 1b+ 1c = 6

and to solve that we’d type

var(’a, b, c’)

solve([9*a + 3*b + c == 32, 4*a + 2*b + c == 15,

a + b + c == 6], a, b, c)

and Sage gives the answer

[[a == 4, b == -3, c == 5]]

which is correct. Of course, this is exactly the linear system of equations
that you would use if someone asked you to find the parabola connecting the
points (3, 32) and (2, 15) as well as (1, 6). That would be f(x) = 4x2−3x+5.
This is another example of a Vandermonde Matrix (except that we didn’t
use a matrix here), as we saw defined in Section 1.5.7 on Page 26.

Naturally, linear systems of equations can also be solved with matrices.
In fact, Sage is quite useful when working with matrices, and can remove
much of the tedium normally associated with matrix algebra. That was
discussed in the matrix section (Section 1.5) on Page 19.

40 1. WELCOME TO SAGE!

1.8.4. Non-Linear Systems of Equations

While linear equations are very easy to solve via matrices, the non-linear
case is usually much harder. First, we will warm up with just one equation,
but a highly-non-linear one. Let us try to solve

x6 − 21x5 + 175x4 − 735x3 + 1624x2 − 1764x+ 720 = 0

which can be done by

solve(x^6 - 21*x^5 + 175*x^4 - 735*x^3 + 1624*x^2 - 1764*x +

720 == 0, x)

which gives

[x == 5, x == 6, x == 4, x == 2, x == 3, x == 1]

That is a list of six answers, because that degree six polynomial has six
roots. It was easy to read this time, but you can also access each answer
one at a time. Instead, we type

answer = solve(x^6 - 21*x^5 + 175*x^4 - 735*x^3 + 1624*x^2 -

1764*x + 720 == 0, x)

and then we can type print answer[0] or print answer[1] to get the
first or second entries. To get the fifth entry of that list, we’d type print

answer[4]. This is because Sage is built out of Python, and Python numbers
its lists from 0 and not from 1. There are reasons for this, based on some
very old computer languages.

Now consider this problem, suggested by Prof. Jason Grout, of Drake
University. To solve

p+ q = 9

qy + px = −6

qy2 + px2 = 24

p = 1

we would type

var(’p q y’)

eq1 = p+q == 9

eq2 = q*y + p*x == -6

eq3 = q*y^2 + p*x^2 == 24

eq4 = p == 1

solve([eq1, eq2, eq3, eq4], p, q, x, y)

which produces

[[p== 1, q== 8, x == -4/3*sqrt(10) - 2/3, y ==

1/6*sqrt(2)*sqrt(5) -2/3], [p== 1, q== 8, x == 4/3*sqrt(10)

- 2/3, y == -1/6*sqrt(2)*sqrt(5) - 2/3]]

As you can see, that is a list of lists, again using square brackets and
commas. Clearly, that is a very hard to read mess. Using the technique that
we learned when analyzing the degree six polynomial above, we replace the
last line with

1.8. USING SAGE TO SOLVE PROBLEMS SYMBOLICALLY 41

answer=solve([eq1, eq2, eq3, eq4], p, q, x, y)

Now we can type

print answer[0]

print answer[1]

and we get

[p==1, q==8, x== -4/3*sqrt(10) - 2/3, y== 1/6*sqrt(2)*sqrt(5) - 2/3]

[p==1, q==8, x== 4/3*sqrt(10) - 2/3, y== -1/6*sqrt(2)*sqrt(5) - 2/3]

This is Sage’s way of telling you:

Solution #1: p = 1, q = 8, x = −4
3

√
10− 2

3 , y =
√
10
6 −

2
3

Solution #2: p = 1, q = 8, x = 4
3

√
10− 2

3 , y = −
√
10
6 −

2
3

Since there are only two answers, we cannot ask for a third. In fact, if
we type print answer[2] then we get

Traceback (click to the left of this block for traceback)

...

IndexError: list index out of range

which is Sage’s way of telling you that it has already given you all the
answers for that problem—the list does not contain a 3rd element.

Now let’s try to intersect the hyperbola x2 − y2 = 1 with the ellipse
x2/4 + y2/3 = 1. We type

var(’y’)

solve([x^2-y^2==1, (x^2)/4+(y^2)/3==1], x, y)

and obtain

[x == -4/7*sqrt(7), y == -3/7*sqrt(7)], [x == -4/7*sqrt(7),

y == 3/7*sqrt(7)], [x == 4/7*sqrt(7), y == -3/7*sqrt(7)],

[x == 4/7*sqrt(7), y == 3/7*sqrt(7)]]

which is unreadable. Once again, we change the command to be

answer=solve([x^2-y^2==1, (x^2)/4+(y^2)/3==1], x, y)

and then type

print answer[0]

print answer[1]

print answer[2]

print answer[3]

print answer[4]

and that produces four answers and an error message

[x == -4/7*sqrt(7), y == -3/7*sqrt(7)]

[x == -4/7*sqrt(7), y == 3/7*sqrt(7)]

[x == 4/7*sqrt(7), y == -3/7*sqrt(7)]

[x == 4/7*sqrt(7), y == 3/7*sqrt(7)]

Traceback (click to the left of this block for traceback)

...

42 1. WELCOME TO SAGE!

IndexError: list index out of range

which is Sage’s way of telling you

Solution #1: x = 4
7

√
7, y = 3

7

√
7

Solution #2: x = 4
7

√
7, y = −3

7

√
7

Solution #3: x = −4
7

√
7, y = 3

7

√
7

Solution #4: x = −4
7

√
7, y = −3

7

√
7

but that there is no “Solution 5.”
Because finding the roots of a polynomial (or finding the solutions to

an equation) is a common mathematical task, there are some other ways
to display the solutions. For example, there’s some code which will display
each root on its own line, and you can choose to show only real roots, only
rational roots, or only integer roots. I will describe that in more detail in
Section 5.7.10 on Page 272.

Furthermore, we aren’t limited to polynomials. We can type

solve(log(x^2) == 5/3, x)

and we receive back

[x == -e^(5/6), x == e^(5/6)]

both of which satisfy the given equation. Note that log in Sage means the
natural logarithm, as was explained on 5.

We can also do

solve(sin(x+y)==0.5,x)

and obtain

[x == 1/6*pi - y]

but that’s clearly not comprehensive. For example, if x = 5π/6− y then we
have

sin(x+ y) = sin

(
5π

6
− y + y

)
= sin

(
5π

6

)
= 1/2

Complex Numbers:

Normally, we expect an 8th degree polynomial to have 8 roots, over the
complex plane, unless some are repeated roots. Therefore, if we ask “what
are the roots of x8 + 1?” then surely we expect 8 roots. These are the 8
eighth-roots of −1 in the set of complex numbers. We can find them with

solve(x^8==-1, x)

1.9. USING SAGE AS A NUMERICAL SOLVER 43

which produces

[x == (1/2*I + 1/2)*(-1)^(1/8)*sqrt(2), x == I*(-1)^(1/8), x ==

(1/2*I - 1/2)*(-1)^(1/8)*sqrt(2), x == -(-1)^(1/8), x == -(1/2*I +

1/2)*(-1)^(1/8)*sqrt(2), x == -I*(-1)^(1/8), x == -(1/2*I -

1/2)*(-1)^(1/8)*sqrt(2), x == (-1)^(1/8)]

giving us eight distinct complex numbers, all of which have −1 as their
eighth power. This can be calculated (by hand) more slowly with DeMoivre’s
formula, but for Sage, this is an easy problem. I simply copy-and-paste the
first root and raise it to the eighth power, as below

((1/2*I + 1/2)*(-1)^(1/8)*sqrt(2))^8

and Sage returns the answer −1.

1.8.5. Advanced Cases

To see why we don’t ask undergraduates to memorize Cardano’s cubic for-
mula, try typing in:

solve(x^3 + b*x + c==0, x)

That gives you Cardano’s formula for a monic depressed cubic. A cubic
polynomial is said to be depressed if the quadratic coefficient is zero, and
monic means that the leading coefficient (here, the cubic coefficient) is one.
The full version of the cubic formula would be given by:

var(’d’)

solve(a*x^3 + b*x^2 + c*x + d == 0, x)

which is just insanely complicated. Try it, and you’ll see. In fact, it is so
complicated that one would have to confess that it is not useable.

An even uglier formula would be the general formula for a quartic, or
degree four, polynomial. Surely any quartic can be written

a4x
4 + a3x

3 + a2x
2 + a1x+ a0 = 0

so we can ask Sage to solve it with

var(’a0 a1 a2 a3 a4’)

solve(a4*x^4 + a3*x^3 + a2*x^2 + a1*x + a0 == 0, x)

and we get an answer that is a formula of horrific proportions.

1.9. Using Sage as a Numerical Solver

The set of x-values that make f(x) = 0 are commonly called “the roots” of
f(x). Let’s suppose you need to know the value of a root of

f(x) = x5 + x4 + x3 − x2 + x− 1

a polynomial whose graph is given below.

44 1. WELCOME TO SAGE!

Furthermore, suppose you are interested in a root between −1 and 1.
This could come about because you graphed it (with or without Sage), and
saw that there is a root in that region; or it could come about because you
saw that f(−1) = −4 but f(1) = 2, thus f clearly crosses the x-axis at some
point between −1 and 1, though we don’t know where just yet. Perhaps a
problem in a textbook simply tells you that the root is between −1 and 1.

To solve for that root, you need only type this

find_root(x^5+x^4+x^3-x^2+x-1,-1,1)

and Sage tells you that

0.71043425578721398

is the root. This is a numerical approximation, because quintic polynomials
have a very special property—if you don’t know what the special property
is, just ask any math teacher.

While it is an approximation, because the computer does several billion
instructions per second, Sage invests computation time in refining the ap-
proximation. Therefore it is an approximation that is trustworthy to around
an accuracy of 10−16, which is one tenth of a quadrillionth. This is a good
approximation, by any standard.

Meanwhile, it turns out there’s no root between −1 and 0. Perhaps you
are told that, or perhaps you graph it (with or without Sage). If you type

find_root(x^5+x^4+x^3-x^2+x-1,-1,0)

then Sage tells you

RuntimeError: f appears to have no zero on the interval

which is perfectly honest, because there’s no root in the interval for Sage to
go and find! If you have no idea where the root is, you can type

find_root(x^5+x^4+x^3-x^2+x-1, -10^12, 10^12)

which is asking Sage to find a root that is between plus/minus one trillion.

1.9. USING SAGE AS A NUMERICAL SOLVER 45

Extremely sophisticated problems can be asked about. Here’s a favorite:
if someone asks you about xx = 5, then you could try to find where xx−5 =
0. You would type

find_root(x^x-5, 1, 10)

or equivalently

find_root(x^x==5, 1, 10)

Another one is to find where ex = 1/x and you’d do that by finding a
root of ex − 1/x = 0. You could graph that with

plot(e^x - 1/x, -3, 3, ymin=-10, ymax=10)

obtaining the plot

and then you can see the root is between −1 and 1. This means that we
should type

find_root(e^x-1/x,-1, 1)

will result in finding out that the root is at x = 0.56714329040979539.
Last but not least, another favorite is to find where sinx = cosx. It

happens to be the case that there’s such an x between 0 and π/2, which you
can see by graphing. The graph is

46 1. WELCOME TO SAGE!

Now here you could ask for a root of (sinx)− (cosx). Alternatively, you
can also type

find_root(cos(x) == sin(x), 0, pi/2)

which is just easier notation.

Returning to an Old Problem about Compound Interest:

Earlier, on Page 6, we saw a problem involving compound interest, and
finding how many months will be required to turn $ 5000 into $ 7000. Now
let’s see how to solve that with Sage in only one line, rather than the previous
approach which required the human to do some algebra.

The first line of our analysis was

7000 = 5000(1 + 0.045/12)n

and translating that into the language of Sage results in

7000 == 5000*(1+0.045/12)^n

then we should type

var(’n’)

find_root(7000 == 5000*(1+0.045/12)^n, 0, 10000)

Note that the second line means that I’m searching for a value of n that
makes the equation satisfied, and that the value of n should be between 0
and 10,000. This seems reasonable, because 10,000 months is a little over
833 years—surely it won’t take that long. Note that it is vital to not include
a comma inside of 10,000, as Sage’s syntax forbids that use of the comma,
as we saw on Page 2 and Page 3. The first command above (var) is just
declaring n as a variable, which we saw on Page 38. In any case, we get the
answer 89.894060933080027 as before, and learn that 90 months will be
required.

1.10. GETTING HELP WHEN YOU NEED IT 47

1.10. Getting Help when You Need It

By now we have learned more than a few commands and it is important
to discuss how you can use the built-in “help features” for Sage. There are
several, each intended for a different purpose.

The one that I use most commonly is called tab-completion (first de-
scribed on Page 4), and is meant for when you do not remember the exact
name of a command. For example, perhaps I am confused if the correct com-
mand is find root, findroot, find roots, root find, or maybe something
else entirely! I would type find and then press the tab key on my keyboard
(without clicking “Evaluate.”) I would then get a list of choices, most of
which have nothing to do with my intentions. However, one is the command
that I seek, find root. Alternatively, if I had reached find r before press-
ing the tab key, then there is only one possible command, and therefore Sage
just completes the command for me.

Now let’s imagine that I have remembered the name of the command—
perhaps solve—but not the exact syntax. Then what I should type is
solve? with no space between the question mark and the command, and
then press tab. A handy window pops up that will display lots of great
information about the command. Feel free to read the discussion if you like,
but I find it faster to merely scroll toward the examples and see how things
are done there, mimicking what I find there as needed. By the way, the huge
collection of information found in that window is called “the docstring,”
which is short for “the documentation string.”

There is another way to use the ? operator. If you put two question
marks after a command name, such as N?? then you will see the entire source
code (usually written in the computer language Python) for the command.
In this case you’ll see the Python code for the N(command which turns
exact algebraic expressions into floating point numbers. Of course, the code
is very advanced and would require much more knowledge of Python than
this book will attempt to impart. (We will barely scratch the surface in
Chapter Five).

Nonetheless, it is important that this feature (of displaying source code)
is there for philosophical reasons. Often we have to know how a mathe-
matical program will accomplish its task (in other words, how it will work
internally) in order to figure out how to best format and preprocess our data
prior to using that program. This comes up in all sorts of situations, and
having access to the source code is essential. It also allows the ideas in the
mathematical program to be used by other programmers in their own pro-
grams. In this way, the open-source community lives as a sort of “hive mind”
sharing ideas widely. Also, mathematical software will inevitably have bugs.
A colleague of mine found a bug in Mathematica, and notified the company
via email about it. They acknowledged the bug, but three years later, it
remains unfixed. In Sage, you can simply fix the bug yourself and submit

48 1. WELCOME TO SAGE!

the change for peer review. If the change is found to be helpful and valid, it
will be made. Sometimes the entire process can take as little as six weeks.

This now brings up an important point: you have to know the name
of the command to use either of those first three methods of getting help.
What if you cannot remember the name of the command? This happens
often, and there are several solutions.

The official Sage Reference Manual can be found at
http://www.sagemath.org/doc/reference/

but it is not for beginners! Be warned, the manual is literally thousands of
pages long. The manual is like an encyclopedia: you don’t read it cover to
cover, instead you look up what you need. Luckily, there is a handy “Quick
Search” box on the left-hand side.

Tutorials are much more useful for most readers. Some are organized
around a mathematical topic and others are organized around a target au-
dience. There is a collection of Sage tutorials, a partial list of which can be
found in Appendix C on Page 303.

There is also a way to search all the docstrings of all the commands in
Sage. However, this will usually produce a very large number of results.
Type, for example:

search_doc("laplace")

and you will see a huge response. It is not exactly human-readable. Here is
a particular line of that output:

html/en/constructions/calculus.html:231:<div class="section"

id="laplace-transforms">

The entire line refers to a webpage. The middle number, between the
columns, is a line number—one is the top line, two is the second line, and
so forth. The information after the second column is written in the HTML
language. If you know HTML, then you can8 use that information.

So far search doc has not told us anything useful, but the information
to the left of the first colon is very useful. That is a filename inside of a
directory hierarchy that contains the documentation of Sage. Usually Sage is
used through a server, such as the Sage cell server or Sage Cloud. However,
one can do a local install, which means you are running Sage contained
entirely inside your own computer, and not communicating with a remote
server. This is not recommend except for experts.

What, then, should the rest of us (who use Sage through a web browser
or Sage Cloud) do in order to get at the information? We must go to
the following URL, which is essentially the information which search doc

provided, but in a different word order.
http://www.sagemath.org/doc/constructions/calculus.html?

As you can see, we replaced html/en/ with

8If you do not know HTML, perhaps you might want to consider learning it. The
HTML language is extremely useful and easy. Being able to make your own web-pages is
an excellent skill, and highly marketable.

1.11. USING SAGE TO TAKE DERIVATIVES 49

http://www.sagemath.org/doc/

in order to construct that URL. That substitution will work in general. By
the way, the en refers to the English language, with fr referring to French, de
to German, and ru to Russian, according to the normal two-letter language
codes in use on the internet.

1.11. Using Sage to Take Derivatives

The command for the derivative is just diff. For example, to take the
derivative of f(x) = x3 − x you would type:

diff(x^3 - x, x)

to learn the answer

3*x^2 - 1

Or for f(x) = sin(x2) you would type:

diff(sin(x^2), x)

to receive the answer

2*x*cos(x^2)

Sometimes you might have earlier defined your own function by

g(x)=e^(-10*x)

earlier, so you can then type

diff(g(x), x)

to get the derivative, which is naturally

-10*e^(-10*x)

but you can also type

gprime(x) = diff(g, x)

which is silent, but then you can type gprime(2) or gprime(3) and it does
what you expect. It tells you the values of g′(2) and g′(3). You can also
type

g(x)=e^(-10*x)

g.derivative()

We cannot, however, define a function called g’(x). That’s because Sage
is built on top of the already existing computer language called Python, and
the apostrophe has a predefined meaning in Python. This is unfortunate,
but we can always write gprime(x) or g prime(x), so it will not be a barrier
for us.

Sage can also do very difficult derivatives:

diff(x^x, x)

which provides the answer

(log(x) + 1)*x^x

50 1. WELCOME TO SAGE!

Now if you’re interested in giving your calculus skills a workout, but
possibly a very intense one, you can try to see how you would calculate
the derivative of xx with your pencil. By the way, it is important to note
that log refers to the natural logarithm, not the common logarithm, as was
explained on Page 5.

1.11.1. Plotting f(x) and f ′(x) Together

One of my favorite bits of code in Sage is

f(x)=x^3-x

fprime(x)=f(x).derivative()

plot(f(x),-2,2, color=’blue’) + plot(fprime(x),-2,2, color=’red’)

and I use this quite frequently. This plots f(x) and f ′(x) on the same
graph, with f(x) in blue, and f ′(x) in red. You can very easily change what
function you are analyzing by changing that first line. Here we are analyzing
f(x) = x3 − x, in blue, and its derivative, f(x) = 3x2 − 1, in red. The plot
is as follows:

1.11.2. Higher-Order Derivatives

While you can find the second derivative by using diff twice, you can jump
directly to the second derivative with

diff(x^3-x, x, 2)

to get the answer

6*x

Third or higher derivatives are also no problem. For example, the third
derivative can be found with

diff(x^3-x, x, 3)

For those who don’t mind typing more, you can do

derivative(x^3-x, x, 2)

1.12. USING SAGE TO CALCULATE INTEGRALS 51

which is more readable than writing diff.

1.12. Using Sage to Calculate Integrals

The only thing you need to understand in order to do integrals in Sage is
that there are really three types of integrals that can be done: a numerical
approximate integral, an exact definite integral, and an indefinite integral.
The first two types result in numbers, but they are found approximately or
exactly, respectively. The third one is the symbolic antiderivative, which
means that the answer is a function—in fact, the answer is a function whose
derivative is what you had typed in. If this is confusing, then let us consider
a simple example:

An Example of Integration:

Using an integral, how would you calculate the area between the x-axis and
f(x) = x2 + 1 on the interval 3 ≤ x ≤ 6? Well, that integral would be∫ 6

3

(
x2 + 1

)
dx =

(
1

3
x3 + x

)∣∣∣∣6
3

=

(
1

3
63 + 6

)
−
(

1

3
33 + 3

)
= 72+6−(9+3) = 66

and that is a number. Here we’ve done it analytically, using calculus. This
is an exact definite integral. It is definite, because it ends with a number.
It is exact, because we did no approximations.

On the other hand,∫ (
x2 + 1

)
dx =

1

3
x3 + x+ C

is an indefinite integral. It produces a function, and not a number. Of course,
we often calculate an indefinite integral on the way to calculating a definite
integral; nonetheless, the definite and indefinite integrals are two distinct
categories. If you want a function, you should use the indefinite integral,
and if you want a number, then you should use the definite integral.

The Indefinite Integral:

The indefinite integral is the simplest. For example, if you wanted to know∫
x sin(x2)dx

you would simply type

integral(x*sin(x^2), x)

and then you’d learn the answer is

-1/2*cos(x^2)

Similarly, if you wanted to know∫
x

x2 + 1
dx

52 1. WELCOME TO SAGE!

you would simply type

integral(x/(x^2 + 1), x)

and then you’d learn the answer is

1/2*log(x^2 + 1)

More About the +C:

Let’s consider the set of functions whose derivative is 3x2. There’s an infinite
number of them, including x3 + 5, x3 − 8, x3 + 81, x3 +

√
π and so forth.

That’s why calculus professors insist that you write∫
3x2 dx = x3 + C

when computing an indefinite integral.
However, Sage does not know about +C. There’s actually a fairly good

reason for this. It has to do with the fact that it isn’t really easy to make a
Python function that represents an infinite family of functions. For example,
if I define f(x) =

∫
3x2 dx, then what should Python say when I ask for

f(2)? How can Sage know what member of the family I am referring to?
With this in mind, you have to keep track of the +Cs yourself. Correctly

handling the +Cs is a key task in one of the projects (the project about
ballistic projectiles), in Section 2.5 on Page 79.

The Definite Integral:

Alternatively, we could put a lower bound of 0 and an upper bound of 1 on
that integral, and then get ∫ 1

0

x

x2 + 1
dx

To get Sage to compute that definite integral for us, we type

integral(x/(x^2 + 1), x, 0, 1)

and we are the answer

1/2*log(2)

However, remember that “log” means the natural logarithm, not the
common logarithm, as explained on Page 5.

Impossible Integrals:

The word “impossible” is a dangerous one in mathematics. Some integrals
are famously impossible. The two most famous are the Fresnel Integral∫ x

0
sin

πt2

2
dt

which is important in optics, and the Gaussian Integral∫ y

0

2√
π
e(−x

2) dx

1.12. USING SAGE TO CALCULATE INTEGRALS 53

which is pivotally important in probability. What do we mean by “impossi-
ble” here? There is no function, built up of addition, subtraction, multipli-
cation, division, roots, exponents, logarithms, trigonometric functions, and
inverse trigonometric functions9 which will have, as its derivative, either the
Fresnel or the Gaussian.

Yet, in applied mathematics, we need to calculate these integrals! In
particular, the Gaussian Integral is superbly important in statistics. So what
is done, is that the definite integral can be computed by dividing the interval
into many, many tiny regions. Lots of narrow rectangles and trapezoids can
be used to approximate the curve. The numerical areas of those rectangles
and trapezoids are added together, to give a numerical approximation for
the integral. (That’s why it is called “numerical integration.”) Each of these
rectangles or trapezoids might well have a small amount of error, but when
you add up all the areas, the hope is that the errors cancel out a bit. You
probably did this technique during your calculus class at some point, or will
at some future point.

Even more sophisticated methods for numerical integration include us-
ing polynomials instead of trapezoids, and Sage uses extraordinarily intricate
techniques to make the best approximation possible. These approximations
are an old and deep subject, going back to Simpson’s Rule, where Simp-
son used tiny parabolas instead of narrow trapezoids. This allowed him to
get rather accurate approximations using far fewer computations than the
trapezoidal rule would require. Since he was working in the first half of the
1700s, that’s quite an accomplishment.

The above might have been a bit confusing, but the whole point of Sage
is that it will worry about these details for you, so long as you know what
you want from Sage.

Let’s take a specific example. Consider the following function

f(x) = e−x
3

sin(x2)

which is an easily understood and continuous function. We can graph it
with the commands

plot(exp(-x^3) * sin(x^2), -5, 5, ymin = 0, ymax=1)

We obtain the following plot

9We should also include the hyperbolic cousins of the trigonometric functions and
inverse trigonometric functions, which you might or might not have been taught about.

54 1. WELCOME TO SAGE!

This function f(x) seems interesting, but computing its integral is quite
frustrating. I cannot solve that integral with my pencil, and I am willing to
wager that you cannot either. Try it if you like.

While it is the case that there is some function g(x), somewhere, which

has f(x) = e−x
3

sin(x2) as its derivative—a logical consequence of some ad-
vanced real analysis and the fact that f is continuous—the practicalities of
the matter are that there is no way to write down g(x) as a formula. To
be really precise, there is no function g(x), built up of addition, subtrac-
tion, multiplication, division, roots, exponents, logarithms, trigonometric
functions, and inverse trigonometric functions (as well as their hyperbolic
cousins, which you might or might not have been taught about) which will
have g′(x) = f(x).

In other words f(x) = e−x
3

sin(x2) is integrable, but the integral cannot
be written in terms of common (and not so common) functions. However,
one could produce a g(x) made with an infinite series in Big-Sigma notation
that would have g′(x) = f(x).

Returning now to Sage, since∫
e−x

3
sin(x2)dx

does not have a nice expression, then when you type

integral(exp(-x^3)*sin(x^2),x)

the Sage replies not with an answer, but instead with

integrate(e^(-x^3)*sin(x^2), x)

which represents an admission of defeat. However, have no fear, because we
can calculate numerical answers approximately—with very high accuracy—
and we’ll learn about that momentarily.

1.12. USING SAGE TO CALCULATE INTEGRALS 55

Numerical Integration in Sage:

A nefarious integral, famous among calculus teachers, is∫
t20etdt

where the 20 could be any decently large number. This comes up in explain-
ing what Euler’s gamma function is, but we aren’t too concerned with that
right now. In any case, we could just type

integral((t^20)*(e^t), t)

but then we get back

(t^20 - 20*t^19 + 380*t^18 - 6840*t^17 + 116280*t^16 - 1860480*t^15

+27907200*t^14 - 390700800*t^13 + 5079110400*t^12 - 60949324800*t^11

+ 670442572800*t^10 - 6704425728000*t^9 + 60339831552000*t^8

- 482718652416000*t^7 + 3379030566912000*t^6 - 20274183401472000*t^5

+ 101370917007360000*t^4 - 405483668029440000*t^3

+ 1216451004088320000*t^2 - 2432902008176640000*t

+ 2432902008176640000)*e^t

which is large enough that it isn’t clear how to get an idea of what that
means. If instead, we had certain bounds, such as to calculate∫ 3

2
t20etdt

then we would type

integral((t^20)*(e^t), t, 2, 3)

and get instead

-329257482363600896*e^2 + 121127059051462881*e^3

which is getting toward an answer! If you really want a numerical answer
then you should use our old trick, the command N(), and type

N(integral((t^20)*(e^t), t, 2, 3))

which would return the number

8.79797452800000e9

and that means 8.79797452800000× 109. This highlights the difference and
similarities of the various types of answer. If you’ve forgotten about N(),
see Page 3.

That number which we just calculated looks like an integer, because it
ends with 528 when you carry out the 109 part—but when we look at the
exact answer, we can see that no, it is not an integer. We know that because
e2 and e3 are involved, and e is an irrational number. Whenever dealing
with computations, it is critical to remember what is an approximation, and
what is exact. Irrational number can be expressed exactly on occasion (like
we just did here, using e2 and e3) but that is the exception and not the rule.
In any case, this paragraph has nothing to do with Sage, therefore we return
to the topic at hand.

56 1. WELCOME TO SAGE!

Speaking of approximations, you can also jump to the numerical integral
very rapidly. I’m sure we can both calculate∫ 1

0

(
x3 − x

)
dx =

(
1

4
x4 − 1

2
x2
)∣∣∣∣1

0

=

(
1

4
14 − 1

2
12
)
−
(

1

4
04 − 1

2
02
)

=
1

4
−1

2
= −1

4

However, if you wanted to ask Sage to calculate that integral numerically,
then you must type

numerical_integral(x^3 - x, 0, 1)

which will output

(-0.24999999999999997, 2.775557561562891e-15)

where the first number is the best guess Sage has for the answer, while
the second number is the uncertainty. In this case, the uncertainty is 2.77
quadrillionths—which is very impressive.

Of course, Sage can do this integral exactly as well, using the commands
we learned moments ago. What is interesting about numerical integration
are the cases when you cannot do the indefinite integral, because like the
Fresnel Integral above it cannot be written, but you can find good numerical
estimates. Consider again ∫ 3

1
e−x

3
sin(x2) dx

but now with bounds, so that it can be done numerically. We would type

numerical_integral(exp(-x^3)*sin(x^2),1,3)

and that returns back

(0.077997011262087815, 8.6840496851995037e-16)

with (as before) the first number being the answer, and the second the
uncertainty. In this case, the uncertainty is 868 quintillionths—which is
very impressive. Another way to say it is that the uncertainty is (1/1152)
trillionths.

Integration by Partial Fractions:

One thing that is very important in problems that arise from Differential
Equations and Calculus II is the question of integration by partial fractions.
If you want to know the partial fraction break-down of

x3 − x
x2 + 5x+ 6

then you must do

f(x)=(x^3-x)/(x^2+5*x+6)

followed by

f.partial_fraction()

and get the answer

x - 6/(x + 2) + 24/(x + 3) - 5

1.12. USING SAGE TO CALCULATE INTEGRALS 57

which is correct. In fact, we just calculated

x3 − x
x2 + 5x+ 6

= x− 6

x+ 2
+

24

x+ 3
− 5

However, you can also do the shortcut and ask instead

integral((x^3-x)/(x^2+5*x+6), x)

which will result in

1/2*x^2 - 5*x - 6*log(x + 2) + 24*log(x + 3)

Improper Integrals:

While the following integral is mathematically valid∫ (
−1 +

1

x2

)
dx = −x− 1

x
+ C

and the right-hand side can be evaluated at x = −1 and x = 1, there is no
finite answer to ∫ 1

−1

(
−1 +

1

x2

)
dx

because this improper integral is divergent. The graph will help reveal why
that is the case. Here is the plot of −1 + 1/x2

generated by

plot(-1+1/x^2, -10, 10, ymin=-2, ymax=2)

Yet, Sage knows this and will say

-x - 1/x

in response to

integral(-1+1/x^2,x)

but instead will respond

ValueError: Integral is divergent.

to the inquiry

58 1. WELCOME TO SAGE!

integral(-1+1/x^2,x,-1,1)

If you’d like a proof of the fact that the above integral is divergent,
consider that∫ −1

−1

(
−1 +

1

x2

)
dx =

∫ 0

−1

(
−1 +

1

x2

)
dx+

∫ 1

0

(
−1 +

1

x2

)
dx

Let’s consider the integral above, from 0 to 1, by means of computing
that integral from a to 1, where a will be slightly more than 0.∫ 1

a

(
−1 +

1

x2

)
=

(
−x− 1

x

)∣∣∣∣1
a

=

(
−1− 1

1

)
−
(
−a− 1

a

)
= a− 2 +

1

a

As you can see, when a approaches 0 from the positive real numbers,
the value of a− 2 + 1/a becomes huge. More precisely, we can write

lim
a→0+

(
a− 2 +

1

a

)
=∞

but then that also means

lim
a→0+

∫ 1

a

(
−1 +

1

x2

)
dx =∞

and, as it turns out, the same is true for the integral from -1 to 0 as well.
Therefore, the original integral is equal to ∞+∞ =∞.

More Improper Integrals:

Another type of improper integral is∫ ∞
2

1

x2
dx

and the way to write that in Sage is to type

integral(1/x^2,x,2,oo)

to which Sage responds 1/2, or another example is∫ ∞
−∞

e−x
2
dx

which in Sage is

integral(exp(-x^2),x,-oo,oo)

and it gives the correct response of
√
π.

The idea is simply that oo is a special code for “infinity.” It is two letter
o’s, and the idea is that if you squint, oo looks like an infinity symbol.

1.12. USING SAGE TO CALCULATE INTEGRALS 59

The Function erf and Integrals:

Among mathematicians and especially among statisticians, the integral∫ y

0

2√
π
e(−x

2) dx = erf(y)

is extraordinarily important. This is the Gaussian Integral that I told you
about earlier; in particular, I said that this integral cannot be found using
the elementary functions of mathematics. It is so important that it has a
name, and that name is erf. While being friendly and pronounceable, erf
stands for the “Error Function.”

Thus if you type into Sage

integral((2/sqrt(pi)) * exp(-x^2), x, -oo, 2)

it will respond

(sqrt(pi)*erf(2) + sqrt(pi))/sqrt(pi)

which is correct because∫ 2

−∞

2√
π
e(−x

2) dx =

∫ 0

−∞

2√
π
e(−x

2) dx+

∫ 2

0

2√
π
e(−x

2) dx

= 1 + erf(2) =

√
π√
π

(1 + erf(2)) =

√
πerf(2) +

√
π√

π

Perhaps you might find that 1 + erf(2) is a more compact and simpler
answer. I would be inclined to agree. I’m not quite sure why Sage does not
simply its final answer further.

In any case, the point is that there are some functions out there which
do not have integrals writable using elementary functions, but, which Sage
calculates anyway, using the erf function.

The Assume Command, and Integrals

This example was identified by Joseph Loeffler, who brought it to my atten-
tion. Let’s say that you wanted to evaluate the integral∫ x

1

t3 + 30

t
dt

and that you typed, accordingly, the Sage commands:

var("t")

integrate((t^3+30)/t, t, 1, x)

(By the way, integrate is a synonym for integral.) As it turns out,
you’d receive back a response that is a huge error message. We must re-
member that in Sage, the last lines of an error message are the ones that
are important. The last lines are as follows:

ValueError: Computation failed since Maxima requested additional

constraints; using the ’assume’ command before integral

evaluation *may* help (example of legal syntax is ’assume(x-1>0)’,

see ‘assume?‘ for more details)

60 1. WELCOME TO SAGE!

Is x-1 positive, negative or zero?

The complaint here, sent to Sage from Maxima, is justified because the
function f(t) = (t3 + 30)/t will explode at t = 0, because it attempts to
divide by zero. The integral is therefore improper if 0 is found between 1
and x. However, if x − 1 > 0, or in plain English, if x > 1, then that’s
clearly not going to happen. Therefore, Sage is very justified in asking us
to explicitly state this assumption.

Let’s follow Sage’s recommended course of action by adding the assume
command before our integrate command. We now have

var("t")

assume(x>1)

integrate((t^3+30)/t, t, 1, x)

which produces the response

1/3*x^3 + 30*log(x) - 1/3

as expected.
The assume command is rare enough that many seasoned Sage users do

not know that it exists. It is unlikely to come up in your work. However,
we’ll see another example of it on Page 184, in a summation, and on Page 200
in an integral related to a Laplace Transform.

1.13. Sharing the Results of Your Work

In this section, I’ll share with you seven effective ways of sharing the re-
sults of your work in Sage. These can be great for scientific collaboration,
submitting work to a faculty member, getting help from a friend, or just
explaining a math concept to someone. My two most favorite methods are
accessed via the “Share” button on the Sage Cell Server screen.

When you have work in the Sage Cell Server, you can click on the “Share”
button. Then you will see options for making a short temporary link, a
permalink, and a “2D bar code,” also called a “QR code.” The perma-
link is my favorite. It will generate an enormous URL, and prove to you
that the new URL works by reloading the page with that URL. Then you
should highlight that URL from the web-browser, from the spot where you
would normally type https://sagecell.sagemath.org/, taking great care
to make sure that you’ve highlighted the whole thing. This URL can now
be used in documents, in emails, in chats, or even on Facebook. The URL
actually encodes the Sage code in the window, and thus your code is not
stored anywhere and therefore cannot be lost, deleted, or destroyed. As long
as you retain a complete and unmodified URL, then that URL will always
work, even years later.

The permalink is long and ugly. This should not be surprising, because
it actually encodes your entire Sage block of code. In fact, the permalink is
so long that it can cause problems in some browsers or email processors. In
almost all cases, it is longer than 140 characters and thus cannot be sent in

1.13. SHARING THE RESULTS OF YOUR WORK 61

a text message or be tweeted. The short temporary link, on the other hand,
is shorter and less intimidating to a human. Being shorter, it is less likely
to be truncated in transit when sent by various means. However, it does
not contain a complete copy of your code. Instead, your code is stored on
the server, and the URL retrieves it. There is no guarantee for how long the
short temporary link will work. Perhaps a day, perhaps a year, or perhaps
forever but perhaps only an hour. In my experience, they often work several
days after being generated. Overall, I’d have to say that if the length and
ugliness are not a problem, then the permalink should always be used and
the short link should never be used.

Those are my two favorite methods of sharing Sage code. The third
method I’d like to share with you is the large 2D barcode produced when you
click “share.” This actually encodes the permalink and thus will work with
all smartphones that can read those 2D barcodes. Most phones will require
you to install an app for the smartphone to be able to handle those barcodes,
which are sometimes called “QR codes,” “Quick Response Codes,” or “ma-
trix barcodes.” On my phone, the app10 was called “QR Code Reader,” and
was free. If you photograph the barcode using one of those apps and the
camera inside your smartphone, then it should open up a web browser and
present the same results as the permalink will. You don’t even need to click
“Evaluate”! Here is a sample 2D barcode:

The fourth method is when you’ve made a plot (as we learned in Sec-
tion 1.4 on Page 9). If you’d like to include this image in any sort of doc-
ument, or email it to someone, then just save the image file from your
web browser—in the same way that you’d save any other image. In most
browsers, this is a right-click followed by selecting “Save Image As. . . ,” and
entering in a filename at the appropriate spot. This image will be in the

10You really do need the app, however. Otherwise you just get a photograph of the
QR Code, which is totally unexciting.

62 1. WELCOME TO SAGE!

“portable network graphic” or *.png format. It will work in nearly all pro-
grams that allow the importing of an image.

The fifth method is just highlighting the Sage code, copying, and then
pasting it into an email. Sometimes I will paste it into Sage Cloud, or my
university’s course management software, D2L. Emailing code can save time,
and it is easy to post code in this way.

The sixth method is to print a screenshot of the Sage Cell Server. Using
a bit of scrolling around and resizing, one can often cause the entire Sage
block of code and its output to be visible at the same time. Then you can
use your browser’s print command (often under the file menu) to print the
webpage just like you’d print any other webpage. (Often the web browser’s
print command is under the “File” menu.) This is often how I ask students
in my classes to submit a homework problem that has been done in Sage.
Last but not least, the seventh method is to follow the steps for printing a
screenshot of the Sage Cell Server, and instead of printing it as a physical
paper document, to select “Save as a PDF” from the web browser’s print
menu. This PDF is essentially identical as a document to what you’d get
from printing, except that it is an electronic copy, rather than a paper copy.

Scientific collaboration is one of the great joys of working in a STEM11

subject. I hope that you will have frequent opportunities to share not only
your ideas, but the hardcore mathematical and quantitative details of your
work, with others. Since Sage has been developed by hundreds of people
scattered across the globe, it is unsurprising that there many features built-
in to Sage to enable sharing. Sage Cloud has even more features, including
organized projects, sharing on an invitation-only basis, and live-chat fea-
tures. You can learn about those on the Sage Cloud website.

11STEM: Science, Technology, Engineering and Mathematics.

Chapter 2

Fun Projects using Sage

Here are some extended examples of using Sage to explore a non-trivial
problem in an area outside of computer algebra. We present one example
from each of several disciplines. The idea is that these projects would each
take a typical student about one long weekend to complete.

Some of these projects can be explored using information taught in
Chapter One, and do not require any additional familiarity with Sage. Some
projects do require a bit more, but that is clearly marked in the first few
paragraphs of the project description.

Microeconomics: Modeling the effect of the selling price on the sales
of ice cream, in terms of a demand function, a revenue function, a
cost function, and a profit function

Biology: Modeling clogged arteries and Poiseuille’s Law, and the
catastrophic effects of even small percentages of blockage on blood
flow. No knowledge of biology is assumed

Industrial Optimization: Solving a linear system of inequalities to
optimally route Taconite from 7 mines to 4 ports for shipping, while
minimizing shipping costs and respecting capacities

Chemistry: A method for balancing rather complicated chemical
reactions by using the RREF of matrices

Physics: Solving ballistic projectile motion problems in Sage, includ-
ing counter-battery fire

Cryptology: Using Pollard’s p − 1 Method of factoring integers, to
try to break the RSA cryptosystem

Pure Mathematics: Using differential calculus to analyze a quintic
polynomial’s features, for finding the optimal graphing window

Electrical Engineering: A mini-project on generating electric-field
vector plots for the field generated by four charged particles in the
coordinate plane.

Also, I am writing a book for a course commonly called Finite Mathe-
matics in the USA, and Quantitative Methods in the UK. This is a course
for people majoring in business, accounting, finance, economics, marketing,

63

64 2. FUN PROJECTS USING SAGE

management, and so forth. A classic topic in that course is the Leontief
Input-Output Analysis method of modeling how various sectors of the econ-
omy interact. This would be a topic in macroeconomics, to complement
the microeconomics project given here. While it does require a bit of ma-
trix algebra, Leontief Analysis is very well suited to Sage and relatively
easy to pick up. You can find a version of that project on my webpage:
http://www.gregorybard.com/

2.1. Microeconomics: Computing a Selling Price

I was once told that the goal of the first microeconomics course should be
twofold: First, to teach the concept of “supply and demand.” Second, to
teach that the three actions of “maximizing profit,” versus “maximizing rev-
enue,” or “minimizing costs,” are three extremely different goals. This is an
oversimplification, of course, and was probably meant as a joke. Nonethe-
less, it highlights the paramount importance of these two topics.

This project will look closely at the issue of “maximizing profit,” versus
“maximizing revenue,” or “minimizing costs.” It is an extended study of
the micro-economics of the sale of ice cream. We imagine a vendor with an
ice-cream cart at a busy intersection in Central Park in New York City.

The ice cream vendor observes that when he charges $ 3 per ice cream
cone, he only sells 120 cones per day. On the other hand, when he charges
$ 2 per ice cream cone, he sells 200 cones per day. In our example, because
he has long since paid off his start-up expenses, the costs of doing business
are just 50 cents per cone, plus a $ 100 per day fee for his permit to sell
food in Central Park. As you might imagine, if he makes his price too high,
he will sell too few cones, and won’t make much profit; if he makes his price
too low, he will sell more cones, but he still won’t make much profit.

The ice cream vendor is going to assume that the demand varies linearly
with price. This often is not quite true, but it is often a reasonable approx-
imation. There are several different ways to realize that the demand n, and
the price p, will have the relationship

n = 360− 80p

or equivalently

p = 4.50− n

80

Let’s pause a moment, and see if this makes sense. First, plugging in
n = 200 and n = 120, we do get the prices of $ 2 and $ 3 that we expect.
If we set p = 2.50, then we get 160, as we would anticipate—that’s the
midpoint.

The easy way to find those equations is to compute the slope connect-
ing the points (200, 2) and (120, 3), and then find the equation of the line
between those two points. Of course, the form of the equation depends on

2.1. MICROECONOMICS: COMPUTING A SELLING PRICE 65

whether or not you assign p or n the role of x. I have seen both conventions
used in textbooks—there is no “industry standard.”

Now observe that, at a price of $ 4.50, he will sell no ice cream at all.
This should be believable, if people are usually expecting to pay around $ 2,
then you cannot charge them more than double what they are accustomed
to pay. The price where demand is zero is called “the maximum feasible
price.” Meanwhile, if the price of a cone is $ 0, then we sell 360 cones per
day—that’s called the saturation point and it is the most that one could
ever hope to sell, namely the demand at the price of $ 0. The model breaks
down for prices over $ 4.50, because it predicts a sale of a negative number
of cones, which does not make sense. Likewise, if you set a demand above
360 cones per day (the “saturation point”) then a negative price is called
for, which also does not make sense. So the model is valid for 0 ≤ p ≤ 4.50
dollars, or equivalently 0 ≤ n ≤ 360 cones.

We’d now like to make some revenue, cost, and profit functions in terms
of the number of cones sold, n. Clearly if one sells n cones at price p, then
the revenue is np. Therefore, we have

r(n) = np = n
(

4.50− n

80

)
= 4.50n− n2

80

as the revenue function. Meanwhile, the cost function is 50 cents per cone,
plus $ 100, for a total of

c(n) = 0.50n+ 100

and that gives us a profit function of

p(n) =
−n2

80
+ 4n− 100

which is a parabola. It makes sense that we should get some sort of curve,
because if you make the price very low, or very high, then the profit is zero
or worse—you have a loss. Somewhere in the middle is the sweet spot, where
profit is made.

Let’s make a table and see that these functions make sense and match
our prior data:

66 2. FUN PROJECTS USING SAGE

Figure 1. The Plot for the Microeconomics Project

Price Cones Sold Revenue Costs Profit
$ 0.00 360 $ 0.00 $ 280.00 $ -280.00
$ 0.50 320 $ 160.00 $ 260.00 $ -100.00
$ 1.00 280 $ 280.00 $ 240.00 $ 40.00
$ 1.50 240 $ 360.00 $ 220.00 $ 140.00
$ 2.00 200 $ 400.00 $ 200.00 $ 200.00
$ 2.50 160 $ 400.00 $ 180.00 $ 220.00
$ 3.00 120 $ 360.00 $ 160.00 $ 200.00
$ 3.50 80 $ 280.00 $ 140.00 $ 140.00
$ 4.00 40 $ 160.00 $ 120.00 $ 40.00
$ 4.50 0 $ 0.00 $ 100.00 $ -100.00

I recommend that you pick 2 or 3 values, and manually verify those 2
or 3 rows of the table, before continuing onward.

Okay, did you really verify 2 or 3 rows of the above? It is really useful
to do so before reading further.

In any case, the graph of these three functions is given in Figure 1. As
you can see, the profit function is the dashed parabola (in black if you’re
reading the color version of this book), the cost function is the line (in red
if you’re reading the color version of this book), and the revenue function is
the solid parabola (in green if you’re reading the color version of this book).
There are lots of facts that can be gleaned from this:

• When the cost function and the revenue function cross, that’s the
break-even point. In other words, when the cost and revenue are
equal, you break even. Here we have two break even points, one
just under 30, and one just under 300. To find them, we type

2.1. MICROECONOMICS: COMPUTING A SELLING PRICE 67

find_root((-x^2)/80 + 4.5*x == 0.5*x+100, 250, 350)

and also

find_root((-x^2)/80 + 4.5*x == 0.5*x+100, 10, 50)

to find out that at roughly 292.664 cones and 27.3350 cones, we
break even. Between these values is a profit, and outside these
values, there is a loss. That seems to match the data in the table.
• The other definition of the break-even point is when profit is zero.

So we could have tried to find the roots of the profit function, as
an alternative means of finding the break-even points. We would
do this by typing

find_root((-x^2)/80 + 4*x - 100, 10, 50)

and also

find_root((-x^2)/80 + 4*x - 100, 250, 350)

to find those same values (292.664 and 27.3350), and you’ll see that
the dotted/black curve crosses the x-axis there.
• The cost function is never zero. That’s because the ice cream ven-

dor has to pay the $ 100 per day fee. As you can see, the line never
crosses the x-axis for any positive n.
• The revenue function is zero at two points. First, when no ice cream

is sold—that makes sense. Surely we can agree that if no ice cream
is sold, then there is no revenue. We found earlier that is at $ 4.50
per cone, and 0 cones per day. Second, revenue is $ 0 when the
ice cream is sold for 0 cents per cone. Clearly, if you don’t charge
anything, then there is no revenue. That occurs at the saturation
point, of 360 cones per day and $ 0 per cone. To find these in Sage,
we should type

find_root(4.50*x-(x^2)/80, 0, 50)

and also

find_root(4.50*x-(x^2)/80, 300, 400)

to get the values 0.0 and 360.0.
• Now we’ve found when profit is zero and when revenue is zero,

and determined that cost is never zero. The next step is to try to
minimize or maximize these functions. If you’ve had calculus, then
you know how to minimize or maximize a polynomial. If not, then
you might recall the fact that a parabola y = ax2 + bx + c has its
optimum at the point x = −b/2a.
• For the revenue function, we see that maximum revenue occurs at

180 cones, a cost of $ 2.25 per cone, and a revenue of $ 405. The
costs would be $ 190, for a profit of $ 215.
• For the profit function, we see that maximum profit occurs at 160

cones, a cost of $ 2.50 per cone, and a revenue of $ 400. The costs
would be $ 180, for a profit of $ 220.

68 2. FUN PROJECTS USING SAGE

• The point of minimum costs would be 0 cones of ice cream, for a
cost of $ 100. However, the revenue is $ 0 and the profit is negative,
a loss of $ 100. Definitely, this is not a good business plan. (Even if
the costs are lower in this bullet than in the previous two bullets.)
• Did you notice how the point of maximum profit had lower revenue

($ 400 vs $ 405) but higher profit ($ 220 vs $ 215) than the point
of maximum revenue? Did you notice how the point of maximum
revenue had lower profit ($ 215 vs $ 220) but higher revenue ($ 405
vs $ 400) than the point of maximum profit?

In conclusion, we see that “maximizing revenue,” “minimizing costs,”
and “maximizing profit,” are three different objectives. Furthermore, we
should suggest that the ice cream vendor sell his ice cream at $ 2.50 per
cone—because maximizing profit is the only intelligent thing to do.

By the way, the code to produce the image with the graphs of the three
functions is as follows:

r(x) = 4.50*x - x^2/80

c(x) = 0.5*x + 100

p(x) = r(x) - c(x)

P1 = plot(r(x), 0, 360, color=’green’)

P2 = plot(c(x), 0, 360, color=’red’)

P3 = plot(p(x), 0, 360, color=’black’, linestyle=’--’)

P = P1 + P2 + P3

P.show()

Challenge

Your challenge is to analyze a new business situation. A particular book is
pre-sold by a publisher in two test markets for $ 49.95 and for $ 39.95. It
sells 80 copies and 140 copies respectively. In the past, the general sales for
the year are 100 times the sales of one of the test markets. (Just to be clear,
that means if the price is set at $ 49.95, the marketing experts predict 8000
copies will be sold, and likewise 14,000 copies at $ 39.95.)

The books require $ 7 to print, plus $ 4000 payable once for the proof-
reading costs. The publisher gets 50% of the sales revenue. In case you
are curious, usually around 20% of the sales revenue goes to the local book-
store, 20% to the distributor, and 10% goes to the author’s royalties. You
may assume that the sales price and the number of copies sold have a linear
relationship.

The deliverables for this project are

(1) an equation relating the sales price and the number of copies sold,
(2) the revenue function,
(3) the cost function,
(4) the profit function,

2.2. BIOLOGY: CLOGGED ARTERIES AND POISEUILLE’S LAW 69

(5) the image showing all three functions graphed simultaneously,
(6) the break even point(s),
(7) the n and p to result in maximum revenue,
(8) the n and p to result in maximum profit.

2.2. Biology: Clogged Arteries and Poiseuille’s Law

If an American dies of natural1 causes, the probability it is of heart disease
is 35.30%, of various forms of cancer is 33.94%, and of any other cause
is 30.75%. Considering that heart disease kills roughly a third of us, the
realities of clogged arteries and cholesterol should concern us all.

Blood flowing through an artery is governed by the same equation as
water flowing in a pipe or oil flowing through a hose. This applies to all such
flows of fluids through a cylinder, except for turbulent flow (where the fluid
is churning around and tumbling over itself) and compressible flow (such as
air flowing in a pneumatic hose). The equation is called Poiseuille’s Law,
named for Jean-Lonard Marie Poiseuille (–), whose dissertation2

was applying this mathematics to the human aorta.
In this project, we’re going to explore the relationships between some of

the variables in Poiseuille’s Law. We are going to display those interdepen-
dencies through tables. In order to do this project, you need to have read
Section 5.1, which describes how to make tables in Sage.

The Background

The formula itself is as follows.

V̇ = (∆P)
πr4

8µL

and regrettably, we do not have time to derive it here. However, I strongly
recommend the curious reader to refer to the article “Blood Vessel Branch-
ing: Beyond the Standard Calculus Problem,” by Prof. John Adam, pub-
lished in the Mathematics Magazine, Vol. 84, by the Mathematical Associ-
ation of America, in 2011.

Let’s take a moment to identify the meaning of each of those variables.

• The V̇ is the volume flow rate, in units such as cubic centimeters per
minute. In a major artery, a typical flow might be 100 cm3/minute.
• The radius of the artery is r, in units such as centimeters. A major

artery might be 0.3 cm or very roughly 1/8th of an inch in diameter.
• The length of the artery is L, again in units such as centimeters.

A major artery might be 20 cm or 8 inches in length.

1Based on 2010 data, from the Center for Disease Control and Prevention’s web-
site “FastStats.” This data excludes (as unnatural causes) any homicides, suicides, and
accidents.

2Poiseuille, J-L. M., Recherches sur la force du coeur aortique, D.Sc., École Polytech-
nique, Paris, France. 1828.

70 2. FUN PROJECTS USING SAGE

Note: The unit of pressure can vary. The standard unit in the American
system of units is pounds per square inch, because forces are mea-
sured in pounds. Likewise, in the metric system, because forces are
measured in Newtons, the pressure units then become Newtons per
square meter. Using Newtons per square meter is kind of funny
because arteries aren’t several square meters in area. Another unit
of pressure used is “atmospheres” where atmospheric pressure is
1 atmosphere. That’s 14.6959 pounds per square inch or 101,325
N/m2.
• Medicine has been around for a long time. For historical reasons, it

is normal to measure blood pressure in a very archaic unit, called
“millimeters of Mercury.” When you go to the doctor and she tells
you that your blood pressure is “120 over 80,” that 120 means “120
millimeters of Mercury,” abbreviated 120 mmHg. Just take it as
a unit, and consider 120 to be “normal.” If you have 145 mmHg
for the first number (called systolic), you might be diagnosed as
having “hypertension.” A score of 180 mmHg systolic can result in
organ damage and is called a “hypertensive emergency.”
• Viscosity is a physics variable that you might or might not have seen

before, and is denoted µ. It represents how “sticky” or “thick” a
fluid might be. Since blood is the fluid in question, and we won’t
consider other fluids, we can just take µ to be a constant. The usual
unit is a “poise.” A typical value for blood might be µ = 0.0035
poise. In comparison, the oil in your car might have µ = 0.250 poise
(because it is sticky) and water has µ = 0.001 millipoise (because it
is not sticky). Honey is very sticky, and has a viscosity of 20 poise.
We can’t use the poise as our unit, because we’re using an antique
unit for pressure. For us,

µ = 4.37535 · · · × 10−8

is just a constant in the formula. The units of viscosity turn out to
be “sec mmHg,” which is extremely strange, but that is what will
make the correct units work out in the formula.

Your Challenge

For this project, you’re going to create some tables that can be used to help
a physician understand the numerical realities of that quartic relationship
in Poiseuille’s Law between arterial radius and blood flow rate.

The tables will allow some variables to change, while most variables
are locked at “standard values” that are chosen to be very typical. The
standard values for our variables in this project are µ = 4.375359× 10−8 for
the viscosity, L = 20 cm for the artery length, r = 0.3 cm for the arterial
radius, V̇ = 100 cubic centimeters per second for the blood flow rate, and
finally ∆P is 0.0275 mmHg.

2.3. INDUSTRIAL OPTIMIZATION: SHIPPING TACONITE 71

• Your first table should keep our standard values for µ, L, ∆P , and
compute V̇ based on r, using Poiseuille’s Law. The r should be
computed based upon the percent blockage, from 0% up to 50%, in
2% increments. The first column of the table should be the percent
blockage, the second column should be the blood flow rate or V̇ .
• Your second table should keep our standard values for µ, L, and V̇ .

Again, the r should be computed based upon the percent blockage,
from 0% up to 50%, in 2% increments. This time, you will compute
the ∆P required to achieve the flow rate of 100 cc/minute given the

blockage (the V̇ given the ∆P), using Poiseuille’s Law. The first
column of the table should be the percent blockage, the second
column should be the ∆P . The third column should represent ∆P
as the “percent of normal.” In other words, 3/2 the normal ∆P
should be reported as 150%.
• The third table should keep our standard values for µ, L, and

∆P . The first column should be the “percent normal flow” from
100% down to 25%, in steps of 3%. The second column should
be the flow rate, in cubic centimeters per second, identified by that
percentage. The third column should be the radius implied by this,
as computed by Poiseuille’s Law. The fourth column should be the
percent blockage. (In other words, 0.15 cm radius is a 50% blockage
because 0.15/0.3 = 0.5.)

You can check your work by plugging into the original equation, but you
might also find it useful to compare your first table to the following, which
is given in increments of 6%.

0 % blockage implies 99.9617636500122 cc/minute.

6 % blockage implies 78.0450430095128 cc/minute.

12 % blockage implies 59.9466058383290 cc/minute.

18 % blockage implies 45.1948885141475 cc/minute.

24 % blockage implies 33.3494195216211 cc/minute.

30 % blockage implies 24.0008194523679 cc/minute.

36 % blockage implies 16.7708010049720 cc/minute.

42 % blockage implies 11.3121689849831 cc/minute.

48 % blockage implies 7.30882030491648 cc/minute.

54 % blockage implies 4.47574398425329 cc/minute.

2.3. Industrial Optimization: Shipping Taconite

In this project, you will solve a very simple but realistic shipping-route
problem, using Linear Programming. This project assumes that you have
read Section 4.21 on Page 186, about how to do linear programming in Sage.

In particular, a mining conglomerate has seven mines around Minnesota
and Wisconsin, and they have shipping facilities at Two Harbors, Green
Bay, Minneapolis, plus a shipping complex at the twin ports of Duluth, MN

72 2. FUN PROJECTS USING SAGE

Shipping Costs

Duluth, MN Two Harbors, Green Bay, Minneapolis, Total
Superior, WI Minnesota Wisconsin Minnesota Production

Mine 1 $ 18/ton $ 30/ton $ 74/ton $ 35/ton 8,000 tons/wk
Mine 2 $ 73/ton $ 21/ton $ 50/ton $ 65/ton 13,000 tons/wk
Mine 3 $ 37/ton $ 93/ton $ 67/ton $ 61/ton 7,000 tons/wk
Mine 4 $ 24/ton $ 95/ton $ 63/ton $ 35/ton 16,000 tons/wk
Mine 5 $ 38/ton $ 77/ton $ 80/ton $ 71/ton 13,000 tons/wk
Mine 6 $ 73/ton $ 15/ton $ 39/ton $ 68/ton 8,000 tons/wk
Mine 7 $ 48/ton $ 51/ton $ 69/ton $ 14/ton 9,000 tons/wk

Table 1. The Table of Shipping Costs and Mining Output

and Superior, WI. You will figure out how much taconite to ship from each
mine to each of the four shipping facilities. You have several constraints.

First, it must be the case that the amount of taconite leaving each mine
(for all four destinations) should be exactly the amount produced that week.
It should not be greater—otherwise you’re ordering your mines to ship more
taconite than they actually have; it should not be less—otherwise you’ll have
a build up of taconite that cannot be stored on site. The total production
at each mine is listed in Table 1.

Second, the demand and capacity of each shipping facility must be re-
spected. The Two Harbors, WI facility can receive and ship up to 18,000
tons. The Green Bay facility can receive and ship up to 25,000 tons. The
Duluth/Superior shipping complex can receive and ship between 15,000 and
45,000 tons, the minimum being there to ensure there is enough revenue to
pay the bills at this expensive location. The Minneapolis facility can receive
and ship between 10,000 and 30,000 tons.

Third, the shipping schedule should carry out the task of bringing the
taconite to the receiving and shipping stations at minimum cost. The cost
of shipping from each mine to each receiving and shipping facility is given
in the Table 1, in dollars per ton.

Your goal is to model this problem as a linear program, code it up
in Sage, and solve it. To help you out, I offer the following hint. Let
d1, d2, . . . , d7 be the amount shipped out of Duluth/Superior from the seven
mines. Let t1, t2, . . . , t7 be the amount shipped out of Two Harbors. Let
g1, g2, . . . , g7 be the amount shipped out of Green Bay. Let m1,m2, . . . ,m7

be the amount shipped out of Minneapolis.
Because you’ll be showing a lot of work in this process, I have no fear of

giving you the final answer. Here is the output of my program:

The minimum cost shipping arrangement is

1883000.0

The quantities shipped to Duluth/Superior from the seven mines are

{1: 8000.0, 2:0.0, 3: 7000.0, 4: 15000.0, 5: 13000.0, 6:0.0, 7:0.0}

2.4. CHEMISTRY: BALANCING REACTIONS WITH MATRICES 73

The quantities shipped to Two Harbors from the seven mines are

{1: 0.0, 2: 13000.0, 3: 0.0, 4: 0.0, 5: 0.0, 6: 5000.0, 7: 0.0}

The quantities shipped to Green Bay from the seven mines are

{1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0, 5: 0.0, 6: 3000.0, 7: 0.0}

The quantities shipped to Minneapolis from the seven mines are

{1: 0.0, 2: 0.0, 3: 0.0, 4: 1000.0, 5: 0.0, 6: 0.0, 7: 9000.0}

By the way, if you think this problem is complicated, please keep the
following in mind. A realistic problem might contain many intermediate
collection points, have several dozen mines, and have limited capacities on
all of the roads between these points. It is easy to imagine a problem with
30 mines, 12 intermediate collection sites, and 5 ports, for 360 + 60 = 420
routes. Each route would have a cost and a capacity limit. Each capacity
limit is, itself, an inequality. Therefore, these sorts of problems, “in the real
world,” can get to be enormous.

2.4. Chemistry: Balancing Reactions with Matrices

When you take a class in chemistry, there’s lots of fun things to do and
learn. One of those things is balancing a chemical equation, which is often
easy—however, a few chemical equations are rather hard (for non-chemists)
to balance. Here, we’ll learn to quickly and easily balance even the most
hideous examples by using matrix algebra.

All the examples throughout this project, as well as the original idea
of the project itself, are entirely due to Prof. Gergely Sirokman, of the
Wentworth Institute of Technology in Boston, Massachusetts. I thank him
for the time he spent crafting these examples for this book.

This project requires knowledge of how to handle linear systems of equa-
tions with infinitely many solutions. Appendix D provides complete coverage
of that topic, but some readers will already know about that and will not
need to read Appendix D.

2.4.1. Background

Let’s start with an energetic example. Back in the age of airships, American
airships were often filled with helium. However, Germany had no access to
large supplies of helium, and so they used hydrogen instead. This is unfor-
tunate because hydrogen gas can explode in the presence of a spark. The
Hindenburg was an airship made by the Zeppelin Company, and exploded
into a fireball in  near Lakehurst, New Jersey. The hydrogen gas com-
bines with oxygen in the air and forms water vapor. Here is the chemical
formula for that reaction:

2 H2 + O2 → 2 H2O

74 2. FUN PROJECTS USING SAGE

Let’s review what it means for a chemical equation to be balanced. If
we have two molecules of H2 and one molecule of O2 before the reaction,
then we have 4 hydrogen atoms and 2 oxygen atoms before the reaction.
Then, if we have two molecules of H2O after the reaction, then we have
4 hydrogen atoms and 2 oxygen atoms after the reaction. No atoms of
hydrogen were created or destroyed during the chemical reaction, because
we had 4 before and 4 after; likewise, no atoms of oxygen were created
or destroyed because we have 2 before and 2 after. Since atoms are never
created or destroyed in chemical reactions, we would have to reject this
chemical equation as unbalanced if we did not have the before-number and
the after-number matching. The match must be there for each and every
atom in the chemical reaction—if even one before-after pair is unequal, then
that means there is a mistake.

The burning of acetylene in a blow torch is a chemical reaction in which
acetylene (C2H2) and oxygen from the air (O2) combine to form carbon
dioxide (CO2) and water (H2O). Based on those chemical formulas, we
have to find the positive integers for the following 4 question marks below
in order to balance the chemical equation.

? C2H2+? O2 →? CO2+? H2O

Take a moment to try it now yourself, with a little bit of fiddling, and
some old-fashioned guess and check. Try to find values for the ? marks.

No really, I mean it, give it a try.
Okay, by this point, I hope you have made an earnest attempt and have

found the values to balance the equation:

2 C2H2 + 5 O2 → 4 CO2 + 2 H2O

This was a bit difficult, at least for me. (Perhaps it was easier for you.)
With more complex chemical equations, you might be guessing and checking
for a while. Unknown to many chemistry students, there is a way to balance
chemical equations by using matrices, that does not involve any guessing.

2.4.2. Five Cool Examples

Here are five interesting chemical reactions that will serve as our examples.

(1) This reaction comes up in the smelting of ferrous oxide (iron ore)
to extract the iron.

? Fe2O3+? CO→? Fe+? CO2

(2) When you put gasoline in your car, octane is one of the important
chemicals. This is the reaction when your car burns octane in an
abundance of oxygen. If you “rev” the engine up too high, other
chemical reactions resulting in CO or even C can occur instead.

? C8H18+? O2 →? CO2+? H2O

2.4. CHEMISTRY: BALANCING REACTIONS WITH MATRICES 75

(3) Here is an example of an acid-base reaction, a type of reaction
fairly important in chemistry. Calcium hydroxide (Ca(OH)2) has
numerous uses, including the treatment of human sewage. Phos-
phoric acid (H3PO4) can be present in human sewage from sources
as common as soda drinks. Here we see that calcium hydroxide
will treat phosphoric acid and convert it to ordinary water and tri-
calcium phosphate. As it turns out, tricalcium phosphate is much
more benign, as it occurs in animal bones and in cow’s milk.

? Ca(OH)2+? H3PO4 →? Ca3(PO4)2+? H2O

(4) In the previous example, we said that phosphoric acid (H3PO4)
occurs in soda drinks. Where does it come from? It can be read-
ily made from pure elemental phosphorous and hypochlorous acid
(HClO) in the presence of water. Hydrochloric acid (HCl) is formed
as an additional product. Here is the reaction:

? P4+? HClO+? H2O→? H3PO4+? HCl

(5) This is one of the preferred methods of extracting gold from di-
lute rock samples. It is also horrendously toxic (NaCN is sodium
cyanide. . . which is as bad as it sounds!)

? NaCN+? Au+? O2+? H2O→? NaAu(CN)2+? NaOH

2.4.3. The Slow Way: Deriving the Method

We’re now going to slowly develop the matrix method of balancing a chem-
ical equation. A shortcut approach will be given in the next section, but it
will make no sense unless you read this derivation very carefully. We will
take as our example the middle member of the five examples that we listed
moments ago.

? Ca(OH)2+? H3PO4 →? Ca3(PO4)2+? H2O

If I had x1 molecules of Ca(OH)2, x2 molecules of H3PO4, x3 molecules
of Ca3(PO4)2, and x4 molecules of H2O, then . . .

• . . . we would have x1 atoms of calcium on the left, and 3x3 atoms
of calcium on the right.
• . . . we would have 2x1+4x2 atoms of oxygen on the left, and 8x3+x4

atoms of oxygen on the right.
• . . . we would have 2x1 + 3x2 atoms of hydrogen on the left, and 2x4

atoms of hydrogen on the right.
• . . . we would have x2 atoms of phosphorous on the left, and 2x3

atoms of phosphorous on the right.

76 2. FUN PROJECTS USING SAGE

Since, for each element, we need to have the same number of atoms on
the left as on the right, then we have the following 4 equations in 4 variables:

x1 = 3x3

2x1 + 4x2 = 8x3 + x4

2x1 + 3x2 = 2x4

x2 = 2x3

The matrix equivalent to that system of equations would be

A =


1 0 −3 0 0
2 4 −8 −1 0
2 3 0 −2 0
0 1 −2 0 0


According to Sage, the RREF is

[1 0 0 -1/2 0]

[0 1 0 -1/3 0]

[0 0 1 -1/6 0]

[0 0 0 0 0]

As you can see, we have a row of all zeros. We have a pivot for x1, x2,
and x3, thus those variables are determined. There is no pivot for x4, so
that variable is free. The “standard form” of the infinite set of solutions is
written as follows:

x1 = (1/2)x4

x2 = (1/3)x4

x3 = (1/6)x4

x4 = x4

However, it is customary only to consider integer values for the coef-
ficients of a chemical reaction’s equation. What do we do when we want
integer-only solutions in a case like this? It is an extremely rare trick, not
commonly taught but easy to learn. First, we take the lcm (least common
multiple) of all the denominators of all the fractions. In this case, the lcm
of {2, 3, 6} is six. Second, we plug in x4 = 6n where n is a new dummy
variable. Now we have

x1 = (1/2)6n = 3n

x2 = (1/3)6n = 2n

x3 = (1/6)6n = n

x4 = 6n

For any integer n, the four values that you would get form an integer
solution to the given equations. This includes nonsense values like n = 0 or
negative values of n. (Or to be precise, the n ≤ 0 cases are mathematically

2.4. CHEMISTRY: BALANCING REACTIONS WITH MATRICES 77

valid solutions to the system of equations, but they are not chemically mean-
ingful.) We want the simplest non-zero all-positive solution, so we should
plug in n = 1. Now we have

x1 = 3; x2 = 2; x3 = 1; x4 = 6

giving the final chemical reaction

3 Ca(OH)2 + 2 H3PO4 → 1 Ca3(PO4)2 + 6 H2O

but we should note that chemists do not usually write the “1” in front of
the third molecule.

Now we should check our work. As you can see, . . .

• . . . we have 3(1)+0 = 3 atoms of calcium on the left, and 1(3)+0 = 3
atoms of calcium on the right.
• . . . we have 3(2) + 2(4) = 14 atoms of oxygen on the left, and

1(8) + 6(1) = 14 atoms of oxygen on the right.
• . . . we have 3(2) + 2(3) = 12 atoms of hydrogen on the left, and

0 + 6(2) = 12 atoms of hydrogen on the right.
• . . . we have 0 + 2(1) = 2 atoms of phosphorous on the left, and

1(2) + 0 = 2 atoms of phosphorous on the right.
• All of those are exact matches, therefore we declare success!

2.4.4. Balancing the Quick Way

That was a really excellent but slow process. Now we might want to bal-
ance chemical equations faster. The key to remember is “atoms are rows,
molecules are columns.” A hint to remembering that is to observe that
the word “row” is shorter than the word “column,” and similarly the word
“atom” is shorter than the word “molecule.” Pairing short-to-short and
long-to-long, it is natural that atoms correspond to rows and molecules cor-
respond to columns.

The atoms can be encoded in any order. Let’s try the second example,
the combustion of octane.

? C8H18+? O2 →? CO2+? H2O

Let’s go one atom at a time. We’re going to ask each molecule how
many of the particular atom it has. For the reagents (the left-hand side of
the arrow), we will use positive integers; for the products, (the right-hand
side of the arrow), we will use negative integers.

Carbon: The four molecules have 8, 0, 1, and 0 atoms of carbon,
thus we write 8, 0, -1, 0.

Hydrogen: The four molecules have 18, 0, 0, and 2 atoms of hydro-
gen, thus we write 18, 0, 0, -2.

Oxygen: The four molecules have 0, 2, 2, and 1 atoms of oxygen,
thus we write 0, 2, -2, -1.

Now we define the matrix, and ask for its RREF, in the notation that we
learned about on Page 23. However, we must be careful to add the column

78 2. FUN PROJECTS USING SAGE

of zeros as the rightmost column of the matrix, signifying the = 0 part of
the equations.

B= matrix([[8, 0, -1, 0, 0], [18, 0, 0, -2, 0], [0, 2, -2, -1, 0]])

print "Question:"

print B

print "Answer:"

print B.rref()

Now we have the output

Question:

[8 0 -1 0 0]

[18 0 0 -2 0]

[0 2 -2 -1 0]

Answer:

[1 0 0 -1/9 0]

[0 1 0 -25/18 0]

[0 0 1 -8/9 0]

Quickly, we verify that the matrix that we entered was the matrix that
we had desired to enter. Next, we take the lcm of the denominators in the
interesting column. The lcm of {9, 18, 9} is clearly 18. For the first three
coefficients, we multiply the entries in informative column by the negative
lcm (in this case, −18), and obtain 2, 25, and 16. For the fourth coefficient,
it is just the lcm itself, namely 18. We conclude with

2 C8H18 + 25 O2 → 16 CO2 + 18 H2O

but now we have to check it.

• We have 2(8) + 0 = 16 atoms of carbon on the left, and 16(1) + 0 =
16 atoms of carbon on the right.
• We have 2(18) + 0 = 36 atoms of hydrogen on the left, and 0 +

18(2) = 36 atoms of hydrogen on the right.
• We have 0+25(2) = 50 atoms of oxygen on the left, and 16(2)+18 =

50 atoms of oxygen on the right.
• Since the numbers match, we declare victory!

Last but not least, it would be good to note that chemists have short-
cuts that they use which simplify matters significantly, but which require
chemical intuition. For example, PO4 and OH are polyatomic ions, which
means that you can “pretend” they are individual atoms. This can remove
one variable from the linear system of equations, which is significant.

Your Challenge:

Now try the first, fourth, and fifth examples on your own. Good luck, and
don’t forget to check your work!

2.5. PHYSICS: BALLISTIC PROJECTILES 79

2.5. Physics: Ballistic Projectiles

Ballistic projectile motion problems are a staple in calculus classes as well as
physics classes. Here we assume that the reader has knowledge of Calculus I
and Physics I, or the high school equivalents. We’re going to explore two
relatively easy problems—where there is no need to use Sage—and then one
that is a bit more difficult—where Sage or some other computational tool
would be required.

For a wide class of simple and intermediate problems, the following
seven-step technique often completely solves the problem.

(1) Read the problem very carefully, and write down a sum of forces
equation—often with the aid of a free-body diagram. This, in turn,
produces an acceleration function using ΣF = ma.

(2) Integrate the acceleration function to get the velocity function,
which unfortunately will have a +C.

(3) Use some information from the problem to compute the value of C.
(4) Integrate the velocity function to get the altitude function, which

unfortunately will have a (probably different) +C.
(5) Again, use some information from the problem to compute the

value of C.
(6) Check that your three functions are consistent with all the given

data (by plugging in values) and with each other (by taking deriva-
tives).

Note: At this point, you have all three functions explicitly and can answer
most any inquiry about the projectile.

(7) Reread the question and see what is actually asked for.

Throughout this project, y(t) will represent the altitude of a projectile,
and y′(t) = v(t) its velocity. Likewise, y′′(t) = v′(t) = a(t) is the projectile’s
acceleration. We will ignore air resistance in all cases. Due to the perils of
rounding error, it is unfortunately necessary that we use g = 9.80665 m/s2

throughout this problem—we really do need all six significant figures.
Before we start, it should be stated that there are two ways of approach-

ing these sorts of problems. Typically, applied mathematicians use lots of
digits of precision midway, and only round at the end, to reflect the uncer-
tainty in the inputs. However, they do not usually have the units inside
of equations attached to all of the coefficients and constants. In contrast
to this, physicists use units inside of equations (!) attached to all of the
coefficients and constants. Furthermore, in the first-year university courses,
some textbooks round off numbers stage-by-stage in the middle steps of the
computations, to reflect the limited precision of the input data. Since I am
accustomed to the applied mathematician’s technique, I use it here, so as to
minimize the chance of a typographical mistake.

You can do these next two warm-up examples with a pencil and a sci-
entific calculator. Then we will proceed to a problem where we need Sage.

80 2. FUN PROJECTS USING SAGE

2.5.1. Our First Example of Ballistic Trajectories

Suppose an artillery piece is located on a hill, such that the muzzle is 25 m
above the surrounding countryside. It fires its projectile at a muzzle velocity
of 300 m/s, at an angle of 30◦ above the horizontal. How far does the
projectile go?

First, we have to construct an acceleration function. The only force on
the projectile (mid-flight) is the weight of the projectile due to the earth’s
gravity. We write

ΣF = ma(t)

−mg = ma(t)

−g = a(t)

a(t) = −9.80665

Second, we integrate to find v(t) with a +C.∫
a(t) dt =

∫
a(t) dt∫

v′(t) dt =

∫
−9.80665 dt

v(t) = −9.80665t+ C

Third, we know that v(0) is the vertical component of the muzzle veloc-
ity. That’s computed with

(300)(cos 30◦) = (300)(0.866025) = 259.807

and therefore

v(t) = −9.80665t+ C

v(0) = −9.80665(0) + C

259.807 = C

Now we know that v(t) = −9.80665t + 259.807, at least during flight.
Fourth, we integrate to find y(t) with a +C.∫

v(t) dt =

∫
v(t) dt∫

y′(t) dt =

∫
(−9.80665t+ 259.807) dt

y(t) = −1

2
(9.80665)t2 + 259.807t+ C

y(t) = −4.90332t2 + 259.807t+ C

2.5. PHYSICS: BALLISTIC PROJECTILES 81

Fifth, we plug in the fact that y(0) is the altitude of the hill, or 25 m.

y(t) = −4.90332t2 + 259.807t+ C

y(0) = −4.90332(0)2 + 259.807(0) + C

25 = C

Finally, we have

y(t) = −4.90332t2 + 259.807t+ 25

and we can begin the most important part of the problem: checking our
work.

• We can check that y′(t) = −9.80664t+ 259.807, which matches our
v(t) except for rounding error.
• We can check that y′′(t) = −9.80664, which matches our a(t) except

for rounding error.
• We can check that y′(0) = v(0) = 259.807, as desired. (That’s the

vertical component of the muzzle velocity.)
• We can check that y(0) = 25, as desired. That’s the altitude of the

artillery piece’s muzzle.

Now, we should compute what the question actually wants to know. It
wants to know the range of the projectile (how far it goes) so we have to
calculate the time of flight and multiply that by the horizontal velocity. To
find the time of flight, we just have to find out when the projectile hits
the ground (when flight ends) because flight begins when t = 0. Of course,
when the projectile hits the ground, the altitude is zero. Therefore, we set
y(t) = 0, and use the quadratic formula.

0 = y(t)

0 = −4.90332t2 + 259.807t+ 25

t =
−259.807±

√
(259.807)2 − 4(−4.90332)(25)

2(−4.90332)

t = −0.0960512 or 53.0820

We check our work with y(53.0820) = 0.0174218 m, a difference of 17
mm, which is not a problem, but which is obviously mere rounding error.
Next, we need the horizontal velocity

(300)(sin 30◦) = (300)(1/2) = 150

and finally the range of the projectile is

(150)(53.0820) = 7962.30

Since a mile is 1609 meters, a range of 7962.30 m seems plausible. After
all, the purpose of artillery is to strike targets several miles away. We should
realize, however, that our altitude of the hill being 25 m is a measurement
accurate probably to the nearest meter or half meter, and not to six signifi-
cant digits. The muzzle velocity is probably also only known to the nearest

82 2. FUN PROJECTS USING SAGE

1%. Therefore, it is better to report the answer to two significant figures,
and reply that the projectile’s range is 7900–8000 meters.

2.5.2. Our Second Example of Ballistic Trajectories

Now we’re going to explore an air-defense problem. We’re going to simu-
late the computer of an air-defense radar system that is tracking incoming
warheads. This is not an unrealistic problem. During the First Gulf War
(), Iraq fired SS-1 “Scud” missiles over long distances to Israel and Saudi
Arabia. Some could be shot down during flight, by surface-to-air missiles,
but there were many incoming Scuds. It is useful to compute the point of
impact—after all, if a warhead is heading toward the empty desert, then
that’s fine, but if a warhead is heading toward a shopping mall, then that’s
an emergency. Just as this book was going to the publisher in July of ,
similar computations were being done by the Israeli air-defense system “Iron
Dome,” so rest assured that these techniques are rather relevant.

To keep the numbers and the model simple, we’ll work with a problem
about artillery shells, and not about regional ballistic missiles.

A projectile has been detected in the vicinity of the air-defense battery
for which our computer has responsibility. The radar’s computer has defined
its coordinate system so that the location of the radar is (0, 0, 0). A radar
snapshot has been taken of the incoming projectile, reporting its position
and velocity. The y direction is straight up, the x direction is due east, and
the z direction is due south. The radar has reported that the projectile is at
a position of (12, 000; 5000; 7000) meters, with a velocity of (−60,−240, 80)
in m/s. The location of impact must first be computed. For simplicity, let
t = 0 be the time of the snapshot, and not the time of launch.

First, we should use the seven-step method to find y(t), the altitude
function. I’ll allow you to do that yourself, so that you can practice. How-
ever, I’ll give you the answers after each step, so that you can check your
work.

(1) Step One: a(t) = −9.80665
(2) Step Two: v(t) = −9.80665t+ C
(3) Step Three: v(t) = −9.80665t− 240
(4) Step Four: y(t) = −4.90332t2 − 240t+ C
(5) Step Five: y(t) = −4.90332t2 − 240t+ 5000
(6) Step Six:

• The first derivative is y′(t) = −9.80664t− 240, matching v(t).
• The second derivative is y′′(t) = −9.80664, matching y(t).
• The altitude at t = 0 is y(0) = 5000, as desired.
• The altitude at t = 0 is y′(0) = −240, as desired.

(7) Step Seven: We need to find the impact time, just like last problem.
However, this does not happen for every problem. In any case, the
time of impact is somewhat soon, at t = 15.7593 seconds.

2.5. PHYSICS: BALLISTIC PROJECTILES 83

(8) Step Seven, Continued: At a rate of ẋ = −60 m/s, in 2.00148, the
projectile will have moved −945.558 in the x-direction; at a rate of
ż = +80, the projectile will have moved 1260.74 in the z-direction.
Of course, at impact, y = 0.

(9) Therefore the point of impact is (−11, 054.4; 0; 8260.74).
Note: The symbols ẋ and ż are just abbreviations for dx/dt and dz/dt.

2.5.3. Counter-Battery Fire:

In real life, one of the fun things that can be done is to mathematically
trace the parabola of flight backward to detect the launch point. Once
the point of launch is known, clearly there is an artillery piece there, and
therefore it would be prudent to heavily bombard that location to destroy
the enemy artillery battery. This technique, called “counter-battery fire,”
was developed in the First World War, and has been a mainstay of modern
warfare since that time. Another reason the technique is fun is that you use
“the wrong value” of t when solving y(t) = 0. Namely, you use the root with
t < 0, something which almost never happens in projectile motion problems.

The time of launch is when y(t) = 0 but t < 0. (Actually, we’re tacitly
assuming that the altitude of the launcher, the observer, and the impact are
all equal or nearly equal. However, if they were not equal, the adjustments
would be straightforward.) The quadratic equation reveals to us that in this
case, t = −64.7057 seconds. This sounds reasonable, as it makes the total
time of flight 80.4650 seconds, being a bit more than one minute.

The coordinates of the firing howitzer can be obtained by computing

(−60)(−64.7057) + 12, 000 = 15, 882.3

(+80)(−64.7057) + 7000 = 12, 176.4

Therefore, we report that the enemy artillery battery is at the following
coordinates:

(15, 882.3; 0; 12, 176.4)

The Truth about Air Resistance:

Of course, we’ve neglected wind and air resistance—in real life, it would be
better to include them. You’re probably curious how this is actually done.
What happens is that time is divided into tiny intervals, around 10−4 or
10−5 seconds, and during those time slices, one pretends that the effect of
wind and air resistance is a constant function or a linear function. About
106 or 107 time slices represents the entire flight path of the projectile. Using
techniques that you will learn in the first parts of Chapter 5, it is extremely
easy to write a computer program which repeatedly steps forward in time
by those tiny time slices.

The modification by a constant function or linear function is going to
only slightly elevate the complexity of the calculation for each time slice.
However, because the time slices are so tiny, the accuracy of the overall

84 2. FUN PROJECTS USING SAGE

computation can be very high. The general concept we are discussing here
is called “numerical simulation.”

2.5.4. Your Challenge: A Multi-Stage Rocket

Now that you have practiced the techniques of projectile motion, let’s con-
sider the test flight of a rocket. In this case, the rocket malfunctions and
crashes, and we are going to model its flight path.

During normal operations, the engine provides a constant force of thrust
of 1.27 meganewtons. However, eleven seconds into flight, the fuel pump
control computer malfunctioned and the flow of fuel to the engine was slowly
throttled to zero. Of course, the rocket crashed. A good model of the thrust
of the engine after the malfunction would be

f(t) = 1.27e(t−11)/2 for all t > 11

again measured in meganewtons. It will be useful to know that the mass of
the rocket at launch was 107,000 kilograms.

We have two simplifying assumptions. While fuel is clearly being burned
during the first eleven seconds, it is okay to pretend as though the mass is
constant for the entire problem. (That’s because only a tiny fraction of the
fuel was burned during the flight.) Second, the rocket does not get very high

at all, and therefore it is okay to pretend g = 9.80665 m/s2 is a constant.
In reality, it does change when you reach higher and higher altitudes, but a
projectile has to get relatively high before that matters too much.

Let’s begin. First, find the altitude function when the engine was work-
ing normally—namely 0 < t < 11. You can assume that the rocket was
sitting on the launch pad, at y = 0, for a long time prior to launch. Once
you have this, compute the altitude, velocity, and acceleration 11 seconds
after launch—the moment that the malfunction occurred.

Next, using the function f(t) above, compute a new acceleration func-
tion, a new velocity function, and a new position function, for use after the
malfunction. That will enable us to find the time of impact.

There are ten deliverable items for this project:

• First, second, and third, provide the acceleration, velocity, and
position functions before the malfunction.
• Fourth, fifth, and sixth, provide the acceleration, velocity, and po-

sition functions after the malfunction.
• Seventh, provide the time of impact.
• Eight, provide a single graph showing the altitude for the entire

flight, from launch to impact.
• Ninth, provide a single graph showing the velocity for the entire

flight, from launch to impact.
• Tenth, provide the maximum height achieved.

To help you understand if you’ve done the problem correctly, the two
graphs are given in Figure 2.

2.6. CRYPTOLOGY: POLLARD’S p− 1 ATTACK ON RSA 85

Figure 2. The Graphs for the Physics Project

2.6. Cryptology: Pollard’s p− 1 Attack on RSA

The RSA Cryptosystem is easily the most famous of cryptographic systems
in use today. Nearly every E-commerce transaction on the internet uses TLS
(Transport Layer Security) or SSL (the Secure Sockets Layer) and therefore
uses RSA to exchange block-cipher keys. The security of RSA is based upon
the difficulty of factoring the product of two (enormous) prime numbers.

This project is one of several ways of attacking the RSA Cryptosystem.
The project assumes familiarity with RSA and a bit of number theory. If
the reader is unfamiliar with RSA, then this project cannot be attempted.
However, I would encourage such a reader to learn RSA. It is relatively easy
to learn, at least compared to other mathematical concepts, and it provides
a window into the practical applications of otherwise “pure” topics such as
prime numbers and modular arithmetic.

This project closely follows the notation given in Cryptography and Cod-
ing Theory, Second Edition, by Wade Trappe and Lawrence Washington,
published by Pearson in 2005. See Ch 6.4 of that textbook. The original
method was discovered by John Pollard in 1974.

Alternatively, Minh Van Nguyen has written a tutorial for Sage and
cryptography that uses RSA as its example. The title is “Number Theory
and the RSA Public Key Cryptosystem” and you can find that tutorial at

http://www.sagemath.org/doc/thematic_tutorials/numtheory_rsa.html

Last but not least, this project requires some knowledge of for loops, as
covered in Ch. 5 of this book.

2.6.1. Background: B-Smooth Numbers and B!

Number theorists will often talk about certain positive integers as being
“smooth.” This is a vague term meaning that the number has no large
prime factors, but rather that the prime factorization is entirely composed
of small primes. More precisely, for any even number k, we say that a
number is k-smooth if all of its prime factors are less than k. As example,
15, 10, 100 and 25000 are all 6-smooth, but 14 is not, because 14 = 2×7 and

86 2. FUN PROJECTS USING SAGE

7 is larger than 6. As another example, 14 and 1400 are 8-smooth, but 11 is
not 8-smooth. This notion can be interesting in several branches of number
theory, but it is especially of interest in cryptography. This is the standard
way of defining what it means for a number to be “smooth.”

As it comes to pass, an RSA public key can easily be broken (by factoring
its N), if either p− 1 or q− 1 are smooth. That’s a rather weird statement,
of course. First of all, p and q are not public information. However, that’s
no barrier to this attack, because it is only required that p − 1 or q − 1 be
smooth—we do not need to know p− 1 nor q − 1, or even which of the two
primes is “one plus a smooth number.”

Another oddity is that we’re going to use a non-standard definition of
smoothness. We’re going to pick a large number B and ask if either p or q
divides B!. Shortly, we’ll use B = 10, 000, but for now, we’ll use B = 100.
Let’s explore how this usage of 100! compares to a number being 100-smooth.

The only way that a number z fails to be 100-smooth is if z has a prime
in its prime factorization that is greater than 100, such as perhaps 101 or
103. Since 101 and 103 are prime, and since both are greater than 100, we
know that neither 101 nor 103 will divide any of the numbers from 1 to
100. Therefore, by the famous number theory lemma that p|ab if and only
if p|a or p|b, we can conclude that 101 does not divide 100!, and likewise
103 does not divide 100!. Likewise, any multiple of 101 or 103 will also not
divide 100!. The same goes for any prime larger, such as 107 and so forth.
Therefore, any number which has a prime in its factorization that is greater
than 100, will definitely not divide 100!.

However, we might be interested in the converse. If a number y does
not divide 100!, is it always the case that y is not 100-smooth? Sadly, here
we will encounter some exceptions. Using the commands

factor(factorial(100))

we learn that

100! = (2)97(3)48(5)24(7)16(11)9(13)7(17)5(19)5(23)4(29)3(31)3(37)2 · · ·
· · · (41)2(43)2(47)2(53)(59)(61)(67)(71)(73)(79)(83)(89)(97)

Therefore, you can see that 298, 349, and 525 will not divide 100!. How-
ever, though those three numbers are all 6-smooth, so they are surely 100-
smooth. So we have now located three examples of 100-smooth numbers
that do not divide 100!.

In fact, we’ve now demonstrated that requiring numbers to be divisors
of 100! is a stricter standard than requiring them to be 100-smooth. In
general, the set of numbers dividing B! is a subset of the numbers that
are B-smooth. Overall though, if you consider numbers less than B!, the
exceptions are few and far between, and the concepts are roughly equivalent.

2.6. CRYPTOLOGY: POLLARD’S p− 1 ATTACK ON RSA 87

2.6.2. The Theory Behind the Attack

We need one more theorem from Number Theory. For any prime number p,
and for any a 6≡ 0 mod p, Fermat’s Little Theorem says that

ap ≡ a mod p or equivalently ap−1 ≡ 1 mod p

Suppose p − 1 divides B!. That means that there is some k such that
(k)(p− 1) = B!. Then we can conclude

2B! = 2(k)(p−1) = (2p−1)k ≡ 1k ≡ 1 mod p

Because 2B! ≡ 1 mod p, it must be the case that

(2B! − 1) ≡ 0 mod p

or more plainly, that c = (2B! − 1) is a multiple of p. This key fact, that c
is a multiple of p, is the heart of the entire idea.

In fact, on further thought, it must be the case that both c is a multiple
of p in the ordinary integers, and that the image of c mod N is a multiple
of p in “the integers mod N .” Most readers will take this rather technical
point on faith, and can skip to the start of the next paragraph. For those
who want absolute rigor, observe that if c is a multiple of p then c = jp, for
some integer j. We have no reason to believe that j is divisible by q, but
let’s divide by j anyway, getting quotient j1 and remainder j2. This means
that j = qj1 + j2 and thus

c = jp = (qj1 + j2)p = pqj1 + pj2 = Nj1 + pj2 ≡ 0 + pj2 mod N

which allows us to conclude that the image of c mod N is just pj2, clearly
a multiple of p.

What have we gained by this? Well, since N = pq, we know that N is a
multiple of p as well. Since both c and N are multiples of p, then gcd(c,N) is
also a multiple of p. That gcd can be only one of two values, actually—that
gcd is either p or N .

Therefore, we first compute c = 2B!− 1 mod N , which is no minor task,
and then compute the value of gcd(c,N). If we get something between 1
and N , we know it must be p, and ordinary division will provide us with
q = N/p. We have factored N and we have broken this person’s public key.

On the other hand, if we get that the gcd is N , we are unlucky and have3

failed. The gcd will be N (resulting in a failure of the attack) if and only
if q also divides c. That will essentially only occur if both p − 1 and q − 1
divide B!.

As it comes to pass, having one of either p − 1 or q − 1 divide B! is
somewhat rare. However, having both p−1 and q−1 dividing B! is extremely
rare. More precisely, p and q are supposed to be generated randomly, and

3If this ever happens to you in practice, try again with a smaller B. If the largest prime
in the prime factorization of p− 1 is f1 and then largest prime in the prime factorization
of q − 1 is f2, then choosing a B between f1 and f2, presumably by guess-and-check, will
result in a successful outcome—namely gcd(c,N) = p.

88 2. FUN PROJECTS USING SAGE

therefore the probability of p−1 dividing B! is independent of the probability
of q−1 dividing B!. The probability of both of them dividing B! is therefore
the square of the probability of one of them happening to divide B!.

Accordingly, we fully expect that the attack will work for any N , so long
as either p− 1 or q − 1 divides B!.

2.6.3. Computing 2(B!) mod N

Let’s reflect upon the fact that computing

2(10,000!) mod N

is not a task that we are asked to do very often. Therefore it would be
unwise to dive into the problem without some thought at first. We might
ask ourselves, exactly how large is 10, 000! going to be? Or, more precisely,
how many digits will it have?

It turns out this question is easy to answer if we recall Stirling’s approx-
imation:

B! ≈ BBe−B
√

2πB

and proceed by taking the common logarithm

log10(B!) ≈ log10
(
BB
) (
e−B

) (√
2πB

)
≈

(
log10B

B
)

+
(
log10 e

−B)+
(

log10
√

2πB
)

≈ (B log10B)− (B log10 e) +
1

2
(log10 2πB)

≈ B (log10B − log10 e) +
1

2
(log10 2π) +

1

2
(log10B)

≈ B (log10B − 0.434294481 · · ·) + 0.399089934 · · ·+ 1

2
log10B

. . . or in our case of B = 10, 000 and log10B = 4. . .

≈ 10, 000 (4− 0.434294481 · · ·) + 0.399089934 · · ·+ 1

2
(4)

≈ 35, 657.0551 · · ·+ 2.39908993 · · ·
≈ 35, 659.4542 · · ·

Having come to realize that 10, 000! is a number that has 36,660 dig-
its (approximately) we probably should not compute it and then ask for

2(10,000!). That might take a very long time to compute. We have to find a
different approach.

2.6. CRYPTOLOGY: POLLARD’S p− 1 ATTACK ON RSA 89

Consider computing

c1 = 21 mod N

c2 = (c1)
2 mod N

c3 = (c2)
3 mod N

c4 = (c3)
4 mod N

c5 = (c4)
5 mod N

c6 = (c5)
6 mod N

...
...

...

Then we would have

c6 ≡ (c5)6 ≡ ((c4)5)6 ≡ (((c3)4)5)6 ≡ ((((c2)3)4)5)6 ≡ (((((c1)2)3)4)5)6 ≡ 2(1)(2)(3)(4)(5)(6)

but observe, that’s just what we wanted to compute, namely

2(1)(2)(3)(4)(5)(6) ≡ 2(6!)

In a similar manner, we can see that cB ≡ 2(B!) mod N .

2.6.4. Your Challenge: Make All This Happen in Sage

Your task is an easy one. Using the strategy above, compute

c = 2(10,000!) mod N

Next, compute p = gcd(c,N), followed by q = N/p and check your work
by multiplying p and q back together again. Here are seven test cases for
you:
357177030895805008781319266876641103581839678151495135129133067010127

5000272002251811540446579586816039346308785565641862331905860763123733

111293094034769304884167051458174320813595510448138274866152002067365927

189114989429752082926285457551369642787381790039260802307452110490304547

250733654482468568921620042866859718852920028026076547177974758239109177

201557389900540095613559219541299540522405259329399736824858252876376521311053006710577163057234093

862021547643631582396998212208722914288258644234791307950582916442747222039795609417741932278317121

By the way, you should be able to cut-and-paste these numbers into Sage
from the pdf file of this book, available on my4 webpage. You do not need
to retype these enormous numbers!

2.6.5. Safeguards against Pollard’s Factorial Attack

As you can see, RSA public keys can be broken (that is to say, N can
be factored) if either p − 1 or q − 1 are smooth. A smooth number (for
example, a 6-smooth or 100-smooth number) has a rather large number
of prime factors which each contribute a small magnitude toward the final
product. For example,

10100 = 21005100

4http://www.gregorybard.com/

90 2. FUN PROJECTS USING SAGE

is a very smooth number, with 200 primes in its prime factorization (counting
multiplicities) and none contribute more than a paltry 5 to final, enormous,
product. What is the opposite extreme to this?

The other extreme would be a prime number. There is only one prime
factor, and it makes all the contribution to the magnitude by itself. Of
course, p and q are odd and thus neither p − 1 nor q − 1 can be prime.
However, they could be 2 times some prime number. Prime numbers p where
both p and (p−1)/2 are prime simultaneously are called “safe primes.” The
almost identical notion, where both p and 2p+1 are prime, are called “Sophie
Germain” primes, named for Marie-Sophie Germain (–).

To make Pollard’s attack totally infeasible, many RSA implementations
require both primes to be “safe primes.” For these numbers, B would have
to be (p − 1)/2 or greater. Even if p is only 200 bits long, which is far
too small, then (p − 1)/2 will be 199 bits long, and that would make it
computationally infeasible to compute 2B!. The sun would run out of fuel,
turning into a red giant5 long before such a computation could terminate.

2.7. Mini-Project on Electric Field Vector Plots

Take a moment to read Section 3.7: Vector Field Plots, beginning on Page
114, if you haven’t already read it. In this mini-project, you’re going to be
asked to modify the model that I used in the subsection “An Application
from Physics” to generate the vector field plot of three electric charges. We’ll
be adding a fourth electric charge, with q3 = −1, and it is glued to the point
(1, 2.25).

Your task is to modify my code to accommodate this fourth electric
charge, and then produce the vector field plot. You should obtain the fol-
lowing image:

5This will happen roughly 5 billion years from now.

Chapter 3

Advanced Plotting
Techniques

One of the most enjoyable uses of Sage is to produce colorful graphic images,
whether for teaching or for publication. Sage has an enormous variety of
plotting and graphing utilities. The basics of plotting were first introduced
in Section 1.4 on Page 9. If you haven’t read that yet, you’ll want to go
read that now. Almost everything else you would want to plot is covered
here in this chapter. The exception are certainly highly colorful or 3D
plots which can only appear on a computer screen and not in a printed
book. Those plots are discussed in the electronic-only online appendix to this
book “Plotting in Color, in 3D, and Animations,” available on my webpage
www.gregorybard.com for downloading.

Moreover, because scatter plots are essentially only used while making
regressions, the technique for scatter plots is discussed in Section 4.9 on
Page 157, for simplicity. Similarly, slope field plots are only used (so far as
I am aware) in the study of first-order differential equations, and therefore
those procedures are discussed in Section 4.22.3 on Page 195 for better
continuity of the exposition.

3.1. Annotating Graphs for Clarity

In this section, we have a collection of techniques for making 2D plots look
attractive. They include labeling axes, add gridlines, adding a frame, mark-
ing a point with a big dot, drawing an arrow on a plot, inserting text into a
plot, shading plots (for integrals), and using dotted or dashed lines.

3.1.1. Labeling the Axes of Graphs

Sometimes it is very useful to label the axes of a graph, directly on the
graph. This is particularly handy when there is a risk of misunderstanding
the units involved, or in a scientific application where many functions are
discussed. In any case, the following code accomplishes that objective.

91

92 3. ADVANCED PLOTTING TECHNIQUES

p= plot(sin(pi*x), -pi, pi, legend_label=’f(x) = sin (pi x)’)

p.axes_labels([’x’, ’y=f(x)’])

p.show()

The above code, provided by Martin Albrecht and Keith Wojciechowski,
produces the following image:

Here is another example from economics. The demand curve

q(p) =
1000

p
− 10

relates the quantity demanded by the market of some product to its price.
The following is some code to plot the above curve, with informative labels.

p = plot(1000/x - 10, 0, 100, ymax = 1000,

legend_label= ’q(p) = 1000/p - 10’)

p.axes_labels([’p (Price)’, ’y=q(p) (Quantity Demanded)’])

p.show()

The image produced by that code is below.

3.1. ANNOTATING GRAPHS FOR CLARITY 93

3.1.2. Grids and Graphing Calculator-Style Graphs

Sometimes in a plot, it is nice to show the grid lines, as if the graph were
drawn on a piece of graph paper. There are two options for this, namely
frame, which can be True or False, and gridlines, which can be True,
False, or "minor". Therefore, there are actually six different choices of
layout. They are given in the following collection of plots.

Plot 1 Plot 2

Plot 3 Plot 4

Plot 5 Plot 6

94 3. ADVANCED PLOTTING TECHNIQUES

Here is the code that generated each of those plots.
Plot 1:

plot(x^3-x, -2, 2, gridlines=True, frame=False)

Plot 2:

plot(x^3-x, -2, 2, gridlines=’minor’, frame=True)

Plot 3:

plot(x^3-x, -2, 2, gridlines=True, frame=True)

Plot 4:

plot(x^3-x, -2, 2, gridlines=’minor’, frame=True)

Plot 5:

plot(x^3-x, -2, 2, gridlines=False, frame=False)

Plot 6:

plot(x^3-x, -2, 2, gridlines=False, frame=True)

3.1.3. Adding Arrows and Text to Label Features

Sage has some nice techniques for making graphs easier to understand.
We’ve already seen how the point command can be used to draw a large
dot on a plot in order to draw the viewers attention. When needed, the
arrow command can be used to draw a rather large and non-subtle arrow.
The arrow is defined by two points: its tail and its head, with the tail co-
ordinates given first and the head coordinates given second. The syntax
is shown below. Also, the text command can be used to add some words
directly to plot. It has two parameters: the message to be added and the
center of the desired words.

tangent_line = plot(2*x, -2, 2, gridlines=’minor’)

curve = plot(x^2+1, -2, 2)

big_dot = point((1,2), size=60)

the_arrow = arrow((0.2, 2.8), (0.9, 2.1))

the_words = text(’$f(x) = x^2 + 1$ and tangent line at $(1,2)$.’,

(0.5, -2.75), fontsize=20)

big_image = tangent_line + curve + big_dot + the_arrow + the_words

big_image.show()

3.1. ANNOTATING GRAPHS FOR CLARITY 95

Last but not least, it is worth mentioning that the text command knows
the mathematical document preparation language “LaTeX.” If you don’t
know LaTeX, then you can type instead

the_words = text(’f(x) = x^2 + 1 and tangent line.’,

(0.5, -2.75), fontsize=20)

and have almost the same effect.

3.1.4. Graphing an Integral

Here is another example to show the power of LaTeX, as well as how to
graph with shading, such as when teaching about integrals.

P1= text(’$\int_0^2 \sqrt{x} \, dx$’, (0.5, 1.1), fontsize=20)

P2= plot(sqrt(x), 0, 2, fill=True)

P= P1 + P2

P.show()

The following image is produced:

96 3. ADVANCED PLOTTING TECHNIQUES

The fill command is excellent for working with integrals, even of func-
tions that cross the x-axis. However, for other types of filled plots, such as
graphing systems of inequalities, other techniques are far more flexible and
correct. That will be covered in the electronic-only online appendix to this
book “Plotting in Color, in 3D, and Animations,” available on my webpage
www.gregorybard.com for downloading.

P1 = text(’$\int_0^2 (-1+\sqrt{x}) \, dx$’, (0.5, 0.3),

fontsize=20)

P2 = plot(-1+sqrt(x), 0, 2, fill=True)

P = P1 + P2

P.show()

As you can see from the screen-capture below, Sage knows which way
to shade depending on if the function is positive or negative.

3.1.5. Dotted and Dashed Lines

Sometimes, when three or more functions are plotted on the same graph,
it is nice to show which is which by some visual means. The better way of
doing this is with color but another way is with dotted or dashed lines. Sage
offers four variations, in addition to the normal solid line. The following bit
of code

P1 = plot(x^2, 0, 1.2, gridlines=’minor’)

P2 = plot(x^3, 0, 1.2, linestyle = ’-’)

P3 = plot(x^4, 0, 1.2, linestyle = ’-.’)

P4 = plot(x^5, 0, 1.2, linestyle = ’:’)

P5 = plot(x^6, 0, 1.2, linestyle = ’--’)

P = P1 + P2 + P3 + P4 + P5

P.show()

will display each of those options simultaneously in the following graph:

3.2. GRAPHS OF SOME HYPERACTIVE FUNCTIONS 97

On the other hand, plotting in color is covered in the electronic-only
online appendix to this book “Plotting in Color, in 3D, and Animations,”
available on my webpage www.gregorybard.com for downloading.

3.2. Graphs of Some Hyperactive Functions

The function sin(1/x) wiggles like crazy near x = 0, but Sage knows this,
and plots a lot of extra points. There are many other hyperactive functions
in mathematics. Here are a few examples, and their Sage images. As you
can see, Sage is imperfect but accomplishes the objective.

Plot 1: The function f(x) = sin(1/x) oscillates like crazy in the neigh-
borhood x = 0. If you look carefully around (0, 1) and (0,−1), you’ll see
that the “blue smear” is not uniform. That has to do with how Sage plots
functions. It will take the x-axis interval that was requested, and divide it
up into 200 integrals. A random x-value is chosen from each interval. Under
certain conditions, Sage can detect that the function is “complicated” and
start using more points, closer together. However, it will always use a finite
number of points, and so in “infinitely complicated” regions, there might
non-uniformities. Furthermore, it means that sometimes a graph will look
different when it is plotted twice in succession.

plot(sin(1/x), -0.5, 0.5)

Plot 2: The function f(x) = exp(1
2−x) has an interesting limit as x

approaches 2. If approaching from the left (using x-values slightly less than
two), the limit is infinity. If approaching from the right (using x-values
slightly more than two), the limit is zero. Therefore, the limit when ap-
proaching 2 in general “does not exist.” This is a nice example, because I
find that students in Calculus I often believe that complicated limits are
artificial inventions and are unlikely to ever come up.

plot(exp(1/(2-x)), -1, 4, ymin=-1, ymax=5)

98 3. ADVANCED PLOTTING TECHNIQUES

Plot 3: The function f(x) = sin(exp(1
2−x)) is just the sine of the pre-

vious example. To the right of x = 2, this is like sin(0), and thus there is
almost no oscillation. To the left of x = 2, this is like a sine wave where
the frequency approaches infinity. It is interesting to look at this graph at
various scales.

plot(sin(exp(1/(2-x))), -1, 4)

Plot 4: This function f(x) = sin(10x)x has no special mathematical
properties, but is interesting for three reasons. First, it is visually attractive.
Second, it occurs in the study of wavelets, which is interesting in its own
right. Third, many students will cancel the xs and work with f(x) = sin(10)
instead.

plot(sin(10*x)/x, -2, 2)

Plot 1 Plot 2

Plot 3 Plot 4

3.3. Polar Plotting

The general idea behind polar coordinates is that instead of an x-coordinate
and a y-coordinate, one has a radius r and an angle called θ. For any
point, the r is the distance to the origin. The θ is defined as 0 being “east”
or horizontal to the right, and positive angles represent counter-clockwise
motion. Thus, 90◦ or π/2 radians would be straight up or “north,” and
180◦ or π radians would be straight left or “west.” Similarly, negative angles
represent clockwise motion. Thus, −90◦ or −π/2 radians would be straight
down or “south.”

3.3. POLAR PLOTTING 99

Every direction of movement from the origin therefore has several names.
For example,

θ ∈
{
. . . ,
−22π

4
,
−15π

4
,
−7π

4
,
π

4
,
9π

4
,
17π

4
,
25π

4
, . . .

}

are values of θ that all represent “north east.”
With that in mind, graphing a function in polar coordinates by hand is a

bit challenging, because you do not know how many “laps” or “revolutions”
around the origin are required before you look back on parts of the curve
that are already drawn. Therefore, it is a bit non-trivial to figure out how
to choose the values of θ that you want plotted.

A function in polar coordinates takes a θ as input, and returns an r as
output. Consider

r(θ) = 2 cos 5θ

which produces a graph called a 5-pedaled “rosette.” To graph this in Sage,
we would type

var("theta")

polar_plot(2*cos(5*theta), (theta, 0, 2*pi))

which results in the following image:

3.3.1. Examples of Polar Graphs

Here are four more interesting polar graphs.

100 3. ADVANCED PLOTTING TECHNIQUES

Plot 1 Plot 2

Plot 3 Plot 4

Plot 1: Sometimes simple functions have complicated polar graphs. An
example is r(θ) = θ3 for −10π < θ < 10π.

var("theta")

polar_plot(theta^3, (theta, -10*pi, 10*pi))

Plot 2: This shape is called a “cardioid,” and is given by

r(θ) = 2− 2 sin(θ)

var("theta")

polar_plot(2 - 2*sin(theta), (theta, 0, 2*pi))

Plot 3: Here is a clover shape. Notice that the pedals have a very
different shape from the rosettes. The function is r(θ) = 2

√
|sin(2θ)|.

var("theta")

polar_plot(2*sqrt(abs(sin(2*theta))), (theta, -pi, pi))

Plot 4: This is an 8-pedaled rosette, given by r(θ) = 2 sin(4θ).

var("theta")

polar_plot(2*sin(4*theta), (theta, -2*pi, 2*pi))

3.3.2. Problems that Can Occasionally Happen

The following curve produces a nice exponential spiral.

polar_plot(exp(theta/10), (theta,-12*pi,2*pi), plot_points=10000)

This curve requires us to specify a large number points—in this case
10,000 points—for the plotting. To show why, consider the following two

3.3. POLAR PLOTTING 101

images. For the image on the left, the plot points option has been used,
and on the right, it was removed—defaulting to only 200.

Plotted with 10,000 points Plotted with 200 points

As you can see, we get a much lower quality image when we plot only
200 points instead of 10,000 points. One way to understand this is to realize
that the domain is −12π < θ < 2π, and thus 200 points is only

200/14π ≈ 4.54728 · · · points per radian

which is a problem because a radian is about 57 degrees. In contrast, if we
use 10,000 points, we have 227.364 · · · dots per radian, which is 50 times as
dense. If you look closely at the exponential spiral with 200 points, you’ll see
that Sage is drawing a piecewise linear curve—a sequence of line segments
connecting the 200 estimated points.

Here is another example, with a very different reason for requiring a
large number of points. This curve is called a Lemniscate. The code to
produce the plot is

var("theta")

polar_plot(3*sqrt(cos(2*theta)), (theta, -6*pi, 6*pi),

plot_points=10000)

In Figure 3.3.2, you can see the images produced with 10,000 points
(above) and with 200 points (below). Partly, the phenomenon is exaggerated
because we are using −6π < θ < 6π as the domain. We could have chosen
−π < θ < π instead, and then we would have more points per radian.

You might be curious to know if there is some sort of condition whereby
we could know, in advance, if this problem will occur or not. Actually,
there is such a condition. The derivative dr/dθ will not exist at any points
P when the curve is parallel with the line connecting P and the origin.
Call such points “radially tangent points.” At radially tangent points, the
computer has to draw multiple pixels for one value of θ, and that only occurs
for radially tangent points. That’s why the algorithm doesn’t quite work in
those conditions. The analogy in rectangular coordinates would be when the
tangent line is vertical. At such points dy/dx does not exist, and plotting
often goes awry at those points—regardless if on a cheap graphing calculator

102 3. ADVANCED PLOTTING TECHNIQUES

A Lemniscate Drawn with 10,000 Points.

A Lemniscate Drawn with 200 Points.

or in a sophisticated piece of software. We saw examples of that on Page 14
where we were graphing some rational functions.

3.4. Graphing an Implicit Function

Sometimes we write the equations for curves in a format such as

(x− 1)2 + (y − 2)2 = 9

instead of in a y = f(x) format. The former is called an “implicit function”
and the latter an “explicit function.”

This is a good example, because we would need to write two functions

f(x) = 2 +
√

9− (x− 1)2

g(x) = 2−
√

9− (x− 1)2

to represent that curve. Therefore, Sage allows you to plot functions that
are defined implicitly.

3.4. GRAPHING AN IMPLICIT FUNCTION 103

For example,

g(x,y)=x^4+y^4-16

implicit_plot(g, (x,-3,3), (y,-4,4))

is a quartic curve favored by furniture designers for making conference room
tables. As you can see, its mathematical formula is x4 + y4 = 16. Here is
the plot:

For other curves, such as

x2 + y5 + 5xy = 25

the explicit form would be even more tedious, if not impossible. The plot,
below, is given by the commands

var("y")

implicit_plot(x^2 + y^5 + 5*x*y == 25, (x,-10,10), (y,-10,10),

gridlines="minor", axes=True)

104 3. ADVANCED PLOTTING TECHNIQUES

As you can see, this plot shows a nice background that looks like graph
paper, using the gridlines option that we first saw in Section 1.4 on Page 9.
The axes=True command is required to show the axes in an implicit plot.

Note that implicit functions in three variables (x, y, and z) are discussed
in the electronic-only online appendix to this book “Plotting in Color, in
3D, and Animations,” available on my webpage www.gregorybard.com for
downloading.

Backwards Compatibility:

The following syntax makes the plot command look like the implicit plot

command’s syntax:

plot(x^2, (x, -2, 2))

where as we would normally have typed

plot(x^2, -2, 2)

as in the original plotting section (Section 1.4 on Page 9). This useful for
when you have to plot things in terms of t and not in terms of x. For
example:

var(’t’)

plot(-16*t^2+400, (t, 0, 3))

is the height of a bowling ball dropped off of a 400 foot building, t seconds
after release. Here is the plot:

This same notation, of using (t, 0, 3) or (x, -2, 2) to mean 0 <
t < 3 and −2 < x < 2 will be used not only for implicit plot but also for
many other plot commands that we will now explore.

3.5. Contour Plots and Level Sets

One classic way of visualizing a function of two variables f(x, y) is through
a contour plot, which displays a collection of “level sets” for that function.

3.5. CONTOUR PLOTS AND LEVEL SETS 105

A level set is the set of points (x, y) such that f(x, y) = z for some fixed z.
For example, if

f(x, y) = x2 + y2

then the following plot shows the level sets for z ∈ {25, 50, 75, 100, 125, 150}.

The code for making that image is

var("y")

contour_plot(x^2 + y^2, (x, -10, 10), (y, -10, 10),

fill=False, axes=True, labels=True)

Here is another contour plot, for g(x, y) = x2 − y2. To generate this
image, all I did was change the “+” into a “-” between x2 and y2 in the
previous code.

These are the old-fashioned contour plots that would have been found
in textbooks during the 20th century. Modern contour plots use shading,
which usually makes them easier to read, but at an increased cost of ink.
The following code

var(’y’)

106 3. ADVANCED PLOTTING TECHNIQUES

contour_plot(x^2-y^2, (x, -10, 10), (y, -10, 10), plot_points=200)

generates an image for the same function as the previous image, g(x, y) =
x2 − y2, but in the shaded style.

In these shaded contour plots, the darker regions represent f values that
are smaller, and the lighter regions indicate f values that are larger. By the
way, the plot points option helps Sage figure out how carefully drawn you
want the contour plot to be. I usually use 200 or 300. The default is 100,
which is too small in my opinion.

In all fairness, I must note that sometimes the shading does more harm
than good. The following contour diagram is perfectly readable without
shading.

The code that generated the previous contour plot was

var("y")

contour_plot(x^4 + (y)^4/2, (x, -10, 10), (y, -10, 10),

fill=False, axes=True)

3.5. CONTOUR PLOTS AND LEVEL SETS 107

On the other hand, if one backspaces over the “fill=False” and “axes
= True” commands, the resulting shaded contour plot has a giant black
region occupying the large central portion of the plot, inside the innermost
oval. This renders the graph almost unreadable—try it if you like.

In order to explore the relationships between some three-dimensional
objects and their contour diagrams, I have made an interactive web page
(sometimes called an interact or an applet) to show some complex shapes
both in 3D plots and in contour plots, simultaneously.

3.5.1. An Application to Thermodynamics

The following example is taken from Elementary Differential Equations and
Boundary Value Problems, by William Boyce and Richard DiPrima, 9th
edition, published by Wiley in 2009. It is Example 1 of Section 10.5, “Sep-
aration of Variables: Heat Conduction in a Rod.” This extended example
will require some techniques from Section 4.1 and Section 4.19. I sincerely
hope it is intelligible without having studied those sections too closely, but if
the reader finds this example confusing, it might be profitable to read those
sections. Before we begin it is necessary that I apologize for the fact that
the typesetting here did not permit me to attach units to constants in all
cases, as is the practice among physicists.

The function u(x, t) below tells us the temperature u at time t and
position x inside of a rod. This rod is 50 cm long, insulated on the outside,
and is initially uniformly at the temperature 20◦C or 68◦F. The ends are
abruptly exposed to a temperature of 0◦C or 32◦F at t = 0 and held there
for t > 0. As you can see, the function is defined by a series

u(x, t) =
80

π

n=∞∑
n=1,3,5,...

1

n
e−n

2π2α2t/2500 sin
nπx

50

but the series variable n runs over all odd positive integers.
Instead, let’s define n = 2j+ 1. Then as j runs through 0, 1, 2, 3, . . . , n

will run through 1, 3, 5, 7, . . . , producing all odd positive integers. This will
allow us to use Sage’s sum command. Furthermore, we’ll just let j run from
0 to 100. After all, when j = 101, we will have n = 203, and that term will

have e−203
2π2

in it, which is going to make that term completely negligible.
In reality, we could stop at j = 10 or j = 20 and probably produce the
same graph, but computers do not mind doing a lot of tedious work, so we’ll
compromise at j = 100. Boyce and DiPrima use α = 1, and so we will do
the same. Now we have

u(x, t) =
80

π

n=∞∑
j=1

1

2j + 1
e−(2j+1)2π2t/2500 sin

(2j + 1)πx

50

Since this is a function of two variables, one way we could visualize this
is by “half-evaluation.” We could plot u(5, t) for 0 < t < 100 and get an

108 3. ADVANCED PLOTTING TECHNIQUES

idea of what the temperature is like over time, 5 cm from one end of the
rod. To do this, we would type

var("j t")

u(x, t) = (80/pi)*sum((1/(2*j+1))*exp(-(2*j+1)^2*pi^2*t/2500.0)

* sin((2*j+1)*pi*x/50), j, 0, 100)

plot(u(5, t), t, 0, 100, gridlines="minor")

This produces the following plot:

A few quick comments are in order. We used 2500.0 instead of 2500
to force Sage to evaluate the expression numerically, and not exactly—
otherwise the resulting exact, algebraic expression is far too complex, and
the computer takes ages to perform the computation. Second, the u(5, t)

is an example of half-evaluation (see Page 127). Third, the syntax for sum-
ming a series is given on Page 182.

Alternatively, we could plot u(x, 300) and get an idea of what the tem-
perature is like throughout the rod, at 300 seconds or 5 minutes after the
cooling has begun. We would replace the last line of the above code with

plot(u(x, 300), x, 0, 50, gridlines="minor")

That produces the image:

3.5. CONTOUR PLOTS AND LEVEL SETS 109

However, a contour plot is much more powerful than any of these. If
you have a contour plot, and draw a vertical line, looking only along that
vertical line, you find out how temperature varies over time at a specific
point. If you draw a horizontal line, looking only along that horizontal line,
you will find out how temperature varies over the rod at a specific time. To
make the contour plot, we replace the last line of the above code with

contour_plot(u(x,t), (x,0,50), (t,0,300), aspect_ratio=0.1,

colorbar=True)

That code gives us the following contour plot:

As you can see, a “color bar” or grayscale legend has been attached to
tell us what the various shades of gray indicate, in terms of degrees Celsius.
That is quite useful here in thermodynamics, but it would not necessarily
have been relevant in the pure mathematics examples that we saw earlier in
this section.

Last but not least, the aspect ratio option needs to be explained.
When plotting geometric objects, such as the two-variable functions that

110 3. ADVANCED PLOTTING TECHNIQUES

we saw moments ago, it is important that the same scale be used on the
x-axis and the y-axis. Otherwise the angles will be off and other distortions
will occur. If we were to remove the aspect ratio=0.1 option, Sage would
observe that we are plotting 300 in one variable, and 50 in another vari-
able. Therefore, the graph would be six times narrower than it is tall, to
maintain the same scale. The best way to see this is to backspace over the
aspect ratio=0.1 option, and hit evaluate. Instead, with the option, the
50 on the x-axis is interpreted as 500, and we obtain a graph that is 1.6 times
wider than it is tall. That is a graph much easier to read. We should not
feel bad about making this change, because 50 cm and 300 s are in totally
different units, and thus the notion of “the same scale” is meaningless.

3.5.2. Application to Microeconomics (Cobb-Douglas Equations)

The following is an example of a Cobb-Douglas production function

f(K,L) = 1400K0.51L0.32

which was derived from hypothetical data for a small business that produces
concrete pipes. The model was found in Linear and Non-Linear Program-
ming with Maple: An Interactive, Applications-Based Approach by Paul
Fishback, published by CRC Press in 2010. The function appears in sev-
eral places throughout the book, but is derived from data as the primary
example of Section 7.3.5, “Non-Linear Regression.”

Using the code:

var("y")

contour_plot(1400*x^0.51*y^0.32, (x, 0, 160), (y, 0, 160),

plot_points=300)

we get the following shaded contour plot, which is moderately informative.

However, the much more readable unshaded plot

3.5. CONTOUR PLOTS AND LEVEL SETS 111

was produced by the following code:

var("y")

contour_plot(1400*x^0.51*y^0.32, (x, 0, 160), (y, 0, 160),

fill=False, axes=True, labels=True)

Forcing Particular Values

Sometimes it is useful to force Sage to choose particular contour lines. If
certain values are very important, or called for by a homework exercise, then
one might want to dictate to Sage what specific z-values are used for the
level sets. Here is an example.

var("y")

contour_plot(1400*x^0.51*y^0.32, (x, 0, 160), (y, 0, 160),

fill=False, axes=True, labels=True,

contours=[10000, 20000, 30000, 40000, 50000, 60000,

70000, 80000, 90000, 100000])

produces the following image:

112 3. ADVANCED PLOTTING TECHNIQUES

3.6. Parametric 2D Plotting

Mathematicians use the term “parametric function” to refer to situations
where the x-coordinate of a point is given as f(t), whereas the y-coordinate
of a point is given as g(t). Therefore, for any point in time t, you know
the x-coordinate and the y-coordinate. This is very useful for describing
more advanced types of motion in physics, including celestial mechanics—
the movement of planets, asteroids and comets.

A really neat example is the Lissajous Curve, named for Jules An-
toine Lissajous (–), but actually discovered by Nathaniel Bowditch
(–). Since Lissajous made a detailed study of them, the curves
were named for him. These curves are of the form x = sin(at + b) and
y = sin(ct+ d), with a and c usually restricted to the integers, though some
textbooks allow a multiplicative constant in front of each sine function, or
rational values for a and c. In any case, if you have a = c then it is just an
ellipse or circle. However, a 6= c makes for much more interesting figures.
Here is some code for the a = 2 and c = 3 case.

var("y t")

f(t) = sin(2*t)

g(t) = sin(3*t)

parametric_plot((f(t), g(t)), (t,0,2*pi))

That code produces the following image:

Lissajous curves are very important in tuning oscilloscopes as well as
tuning audio systems. If we change f(t) to be instead cos(2t), we get a very
different figure.

3.6. PARAMETRIC 2D PLOTTING 113

The phenomenon that we saw with polar coordinates on Page 101, where
we had too few points per radian, can also occur in parametric equations.
Consider changing the domain to −100 < t < 100 in the previous example,
taking care to keep y = cos(2t). To be explicit, that means change (t,

0, 2*pi) into (t, -100, 100). The resulting output is extremely poor,
because the points are far apart. Since the domain is length 200 in units
of t, and the default number of points plotted is 200, each point used to
construct the plot is 1 unit of t apart. When we had the interval being of
length 2π, the points are π/100 ≈ 0.0314159 units of t apart, rather a large
difference.

It is an excellent exercise for students to try to convert the parametric
form of a function into an implicit function—if possible. However, it is not
possible (using the elementary functions) for some curves. Also, the calculus
of parametric curves is straightforward but significantly different than that
of explicit functions. Most calculus textbooks cover the parametric functions
topic but some instructors skip it—which can be a problem for engineering or
physics students who encounter parametric functions or equations in higher

114 3. ADVANCED PLOTTING TECHNIQUES

level classes. If the reader would like to learn more, I recommend Ch. 9.2
and Ch. 9.3 in Soo Tan’s Calculus with Early Transcendentals, 1st Edition,
published by Cengage in 2011.

3.7. Vector Field Plots

First, it might be a good idea for us to remind ourselves what a vector
field plot looks like. Here’s an example, where we’re plotting the following
vector-valued function:

~f(x, y) =

[
sinx
cos y

]
To make the vector field plot, we’d type

var("y")

plot_vector_field((sin(x), cos(y)), (x, -10, 10), (y, -10, 10),

plot_points=30)

Note, that’s another example of how Sage knows that x is a variable,
but we have to remind it that all other letters are variables, declaring them
with the var command. Here we’re saying that the x-value of our vector-
valued function is sin(x), and the y-value of our vector-valued function is
cos(y). Then the (x, -10, 10) notation means that the x-range we want
is −10 < x < 10, and naturally the (y, -10, 10) indicates −10 < y < 10.
The plot points parameter tells Sage how many vectors to draw in each
row and in each column of the plot. I’m sure you’d agree that making such
a plot, with 900 separate arrows, would be exceptionally tedious to do by
hand. Now we have the following plot

Just as ~f(x, y) returns a vector for each point (x, y), we have (at a bunch
of points in the coordinate plane) an arrow, representing some vector. The
direction is very faithfully reproduced, and the length of the arrow is a rough
representation of the magnitude of that vector.

3.7. VECTOR FIELD PLOTS 115

How can we interpret such plots? One way is that if a small object were
placed in the coordinate plane, at each instant of time, it would move in the
direction pointed to by the arrow under the object. The only assumptions
are that the mass and radius of the object be tiny. Another interpretation
involves gradients, which we will now explore.

3.7.1. Gradients and Vector Field Plots

One reason to make a vector field plot is to study the gradient of a function.
We can see that if

g(x, y) = (sin y)− (cosx)

then the partial derivatives would become

∂g

∂x
= sinx and

∂g

∂y
= cos y

which would make the gradient

∇g =

 ∂g
∂x

∂g
∂y

 =

[
sinx
cos y

]
= ~f(x, y)

As you can see, that’s the same vector-valued function which we just
plotted. If we wanted to visualize g(x, y) as the z-coordinate of (x, y) we
could cause a 3D-plot using

g(x,y) = sin(y) - cos(x)

plot3d(g, (x,-10,10), (y,-10,10))

As you can see, we get a patterned object not unlike an egg carton.
Now look at the vector field plot again. There are some spots where a
bunch of arrows are all pointing to the same point. If you put a marble in
the neighborhood of that point, it would be drawn toward that point, and
stay there. Those are points where ∇g is the zero-vector, and corresponds

116 3. ADVANCED PLOTTING TECHNIQUES

to a local minimum of the egg carton. There are also spots where a bunch of
arrows are all pointing away from a particular point. If you put a marble in
the neighborhood of that point, it would be repelled away from that point
and not return. Those are points where ∇g is also the zero-vector, but they
correspond to a local maximum of the egg carton. An applied mathematician
or physicist would say that these are attractive and repulsive equilibrium
points, for the local minimum and local maximum cases, respectively.

How can you distinguish between those local minima and maxima? Well,
you could have Sage generate a vector field plot and make the identification
visually. Or, you could consider the Hessian matrix (in this case a 2 × 2
matrix of second partial derivatives), and then compute the determinant of
that matrix. Clearly, one task is considerably more difficult than the other.

3.7.2. An Application from Physics

Imagine three electric charges in the coordinate plane. Charge 1 is glued to
the origin, and Charge 2 is glued to the point (2, 0). The third charge is
mobile, at the point (x, y). We might like to know what the total force of
electric charge is on the mobile third charge. To make things more interest-
ing, let’s imagine that charges are +2, +1, and -1 for Charge 1, Charge 2,
and the mobile charge. The unequal charges will make the problem more
interesting. A fantastic way to visualize this is with a vector field plot.

Before we continue, let’s briefly remind ourselves of Coulomb’s Law.

The force ~F (in Newtons) of a charge of q0 Coulombs upon a charge of q1
Coulombs is given by

~F = −
(

1

4πε0

)(
q1q0
||~r||3

)
~r

where ~r is the vector from q1 to q0, where ε0 is constant (called “the permit-
tivity of free space”), and where π has its usual meaning. Some textbooks
define ~r to be the vector from q0 to q1, in which case we would drop the
minus sign at the front of the right-hand side. (By the way, the notation
||~r|| means the magnitude, or length, of the vector ~r.)

Some readers might be surprised to see the cube in the denominator.
That’s because we are working with vectors. If we wanted only to work
with scalars, i.e. the real number expressing the magnitude of the force,
we’d have instead

||~F || =
∣∣∣∣− 1

4πε0

∣∣∣∣ (|q1||q0|||~r||3

)
||~r|| = 1

4πε0

(
|q1||q0|
||~r||2

)
giving us the familiar inverse-square law.

We’re now ready to analyze the code (found in Figure 1) which was used
to generate the following plot.

3.7. VECTOR FIELD PLOTS 117

plot_vector_field(net_f, (x, -1, 4), (y, -2, 2), plot_points=30)

var("y")

x1= 0

y1= 0

x2= 2

y2= 0

r_vec_1 = vector([x1-x, y1-y])

r_vec_2 = vector([x2-x, y2-y])

q0= -1

q1= 2

q2= 1

f1 = - q0*q1*r_vec_1 / r_vec_1.norm()^3

f2 = - q0*q2*r_vec_2 / r_vec_2.norm()^3

net_f = f1 + f2

plot_vector_field(net_f, (x, 0.1, 1.9), (y, -2, 2), plot_points=30)

Figure 1. The Code for the Physics Application of Vector
Field Plots

First, we define x1 and y1 to be the coordinates of Charge 1, at the
origin. Second, we define x2 and y2 to be the coordinates of Charge 2,
located at the point (2, 0). It is useful for us to have these values isolated at
the top of the program (rather than substituted into the middle of formulas,
later in the program), because it will enable us to experiment by adjusting
the numbers slightly.

118 3. ADVANCED PLOTTING TECHNIQUES

Third, we define two vectors. The vector r vec 1 goes from (x, y) to
(x1, y1). Likewise, the vector r vec 2 goes from (x, y) to (x2, y2). Whenever
you have to define a vector, whether in Sage or in any other mathematical
situation, it is convenient to remember the trick “head minus tail.” If you
visualize r vec 1 as an arrow, then the arrowhead would be at (x1, y1), and
the tail feathers would be at (x, y).

Fourth, we define the charges of the mobile charge, Charge 1 and Char-
ge 2 as q0, q1, and q2. Fifth, we apply Coulombs law. For the force between
Charge 1 and the mobile charge, we compute f1 and likewise f2. As you can
see, I dropped all the constants, because they won’t affect1 the directions
of the vectors. Sixth, net f is the sum of those two forces, giving the total
force on the mobile charge. Note that we had no need of computing the force
of Charge 1 upon Charge 2, nor the equal and opposite force of Charge 2
upon Charge 1, because they aren’t relevant to the mobile charge. Last but
not least, we use the plot vector field command, to plot the vector field
for 0.1 ≤ x ≤ 1.9 and −2 ≤ y ≤ 2.

Like Icarus, Don’t get Too Close!

While the charges are located at (0, 0) and (2, 0), you’ll observe that we’ve
deliberately set the x-values to exclude x = 0, x = 2, and their immediate
neighborhood. If you change (x, 0.1, 1.9) to (x, -1, 4) in the last line
of the code of Figure 1, you’ll see that there are some crazy and huge vectors
there that appear to be signaling nonsensical conclusions. In particular, it
looks like some of those large vectors are pointing the wrong way.

What’s actually happening here is that when (x, y) gets too close to
one of the charges, the distance gets very small. That means that the
denominator, which is cubed, gets extremely tiny. That makes the force
absolutely huge. The vector then becomes so long that it ends up taking up

1It was also for this reason that we never bothered with units in this problem—the
units will not affect the directions of the vectors.

3.7. VECTOR FIELD PLOTS 119

far more space in the plot than it should, and creates this visually misleading
result. In a Sage vector field plot, the tail of the arrow represents the location
which the arrow is describing. However, the eye seems to imagine that the
arrowhead represents that location. Normally, this won’t come up often.

Mathematically speaking, (0, 0) and (2, 0) are the poles of the total force
function, because the function divides by zero there. In general, you will
get a much better vector field plot if you exclude the poles from the region
being graphed.

A Challenge:

You are now ready to attempt the mini-project on Electric Field Vector
Plots, which is given on Page 90.

3.7.3. Gradients versus Contour Plot

The following example very nicely shows the relationship between contour
plots and the vector field plot of the gradient. This example was created by
Augustine O’Keefe. We are considering the function

f(x, y) = cos(x)− 2 sin(y)

and its gradient, which is

∇f(x, y) =<
∂f

∂x
,
∂f

∂y
>=< − sin(x), −2 cos(y) >

We will draw the contour plot of f(x, y), as well as the vector field plot
of the gradient, ∇f(x, y), but superimposed on the same image. The code
that we use is as follows:

f(x,y) = cos(x)-2*sin(y)

gradient = derivative(f)

P1 = plot_vector_field(gradient, (x,-5,5), (y,-5,5))

P2 = contour_plot(f, (x,-5,5), (y,-5,5), fill=False)

show(P1 + P2)

That code produces this image:

120 3. ADVANCED PLOTTING TECHNIQUES

Here we can see what is like a collection of hills and valleys (the contour
plot), almost in the style of geological contour maps used by geologists and
boy scouts. The arrows, representing the gradient, represent the direction
of movement that a drop of rain would take, moving from higher altitude to
lower altitude. We can clearly see where the flooding would be in a major
rainstorm. Last but not least, we can definitely see that the gradient vector
is always perpendicular to the level-set curves (the curves that comprise the
contour plot.)

3.8. Log-Log Plots

In the middle of the twentieth century, it was not uncommon to find “log-
log paper” available for purchase at university bookstores. This is graph
paper where the gridlines are spaced in a peculiar way: each horizontal and
vertical line is a logarithmic scale. For example, instead of some particular
inch representing x = 1 to x = 2 divided into steps of perhaps 1/10th (e.g.
1, 1.1, 1.2, 1.3, . . . , 2), a particular inch might represent x = 10 to x = 100.
The subdivisions would represent 101, 101.1, 101.2, 101.3, . . . , 102. The next
inch would represent x = 100 to x = 1000 and the previous inch would
represent x = 1 to x = 10.

The first question would be “why was this done?” The purpose of a log-
log plot is to enable the computations of power laws by means of regression,
or perhaps to simply display a power law. For example, the volume of a
sphere is proportional to the cube of its radius; the stopping distance of a
car is proportional to the square of its speed; the energy of the return of a
radar signal is proportional to the inverse fourth power of the distance to
the target; many other examples exist. While c and n can vary, all these
relationships are of the form y = cxn.

In the era of graphing calculators and computer algebra packages, log-
log paper is extremely hard to find. However, Sage can make plots in a

3.8. LOG-LOG PLOTS 121

log-log fashion. First, let’s illustrate the effect by considering y = x5, which
is clearly a power law with c = 1 and n = 5.

Ordinary Coordinates Log-log Coordinates
The plot on the left was given by

plot(x^5, (x, 1, 16), gridlines="minor")

and that of the right was given by

plot_loglog(x^5, (x, 1, 16), gridlines="minor")

The following code plots a function y = 2x along with five data points,
namely {(2, 4), (3, 8), (4, 16), (5, 32), (6, 64)}.
plot_loglog(2^x, (x, 1, 16), gridlines="minor") +

scatter_plot([(2,4), (3,8), (4,16), (5,32), (6, 64)],

facecolor=’red’)

Below is the plot generated by the above code.

For more information about scatter plot see Section 4.9 on Page 157.
Since this transformation of ordinary two-dimensional space (namely R2)
into the log-log plane was so useful, you might be curious if there is an
analogy for three dimensional space (namely R3). There is, and it is called
log-log-log space. This comes up in the derivation of Cobb-Douglas style
formulas in macroeconomics. In general, those equations are of the form

P = cKaLb

122 3. ADVANCED PLOTTING TECHNIQUES

where P is production, K is capital invested, and L is labor invested. The
coefficients a, b, and c are found by fitting a best-fit plane (the three-
dimensional analog of a best-fit line) but in log-log-log space instead of
in ordinary three-dimensional space. See Section 3.5.2 on Page 110 for an
example of a Cobb-Douglas function derived from data.

3.9. Rare Situations

Here we have two rare situations that might come up, or might not. One is
a necessary flaw in the way Sage handles the odd roots of negative numbers.
The other has to do with functions that have x-values missing from their
domains.

Background on Cube Roots

When we say 3
√

64 = 4, what do we really mean? Of course, this is just a
way of writing the fact that 43 = 64. However, when the complex numbers
enter the picture, things get a bit more complicated.

If I ask for the cube root of 8, there are three numbers z in the complex
plane such that z3 = 8. Specifically, they are

z = 2 cos(0◦) + i2 sin(0◦) = 2 + 0i = 2

z = 2 cos(120◦) + i2 sin(120◦) = −1 + i
√

3

z = 2 cos(240◦) + i2 sin(240◦) = −1− i
√

3

Let’s take a brief moment to verify that last one, by cubing it carefully.(
−1− i

√
3
)3

=
(
−1− i

√
3
)(
−1− i

√
3
)2

=
(
−1− i

√
3
)(

1 + 2i
√

3 + i23
)

=
(
−1− i

√
3
)(

1 + 2i
√

3− 3
)

=
(
−1− i

√
3
)(
−2 + 2i

√
3
)

= (−1)(−2) + (−1)(2i
√

3) + (−i
√

3)(−2) + (−i
√

3)(2i
√

3)

= 2− 2i
√

3 + 2i
√

3− 2i2(3)

= 2− (2)(−1)(3)

= 2 + 6 = 8

Therefore, the set of complex numbers that cube to 8 would be{
2, −1 + i

√
3, −1− i

√
3
}

3.9. RARE SITUATIONS 123

However, of these three, the first is real—normally that’s “the one we want”
(at least, usually.) Similarly, if I ask for the cube root of -8, there are three
numbers z in the complex plane such that z3 = −8. Specifically, they are

z = −2 cos(0◦)− i2 sin(0◦) = −2− 0i = −2

z = −2 cos(120◦)− i2 sin(120◦) = 1− i
√

3

z = −2 cos(240◦)− i2 sin(240◦) = 1 + i
√

3

Therefore, the set of complex numbers that cube to -8 would be

{
−2, 1− i

√
3, 1 + i

√
3
}

and as you can see, it is just the previous set times −1. Again, of these
three solutions, the first is real, and normally that’s “the one we want” (at
least, usually.) Now it is noteworthy that I can get all three solutions with
the following command

solve(x^3 == 8, x)

and of course, it works fine with == -8 also.
The issue is that for certain extremely important topics, including al-

gebraic number fields and finite fields (branches of abstract algebra), it is
important that Sage return one of the two complex roots when you type

print -8^(1/3)

even though we usually desire the real root.
That means if you type

plot(x^(1/3), -5, 5)

then you’ll only get a graph showing 0 < x < 2, along with the error message

verbose 0 (2414: plot.py, generate_plot_points)

WARNING: When plotting, failed to evaluate function at 100 points.

verbose 0 (2414: plot.py, generate_plot_points)

Last error message: ’negative number cannot be raised to a fractional power’

because Sage is returning the complex roots (which are not visible on the real
plane) for the x < 0 values. As you can see, Sage is explicitly reprimanding
you for raising a negative number to a fractional power.

The graph is given below:

124 3. ADVANCED PLOTTING TECHNIQUES

Now I’ll tell you how to circumvent this issue.

Plotting Odd Roots of Negative Numbers

To plot the negative real cube root, you have to use the following:

plot(lambda x : RR(x).nth_root(3), (x,-1, 1))

and not

plot(x^(1/3),-1,1)

which produces the error message we just discussed.
The code with the lambda produces the nice smooth beautiful cube root

graph which we would expect to see.
Here is the plot:

An alternative is to use

plot(sign(x) * (abs(x)^(1/3)), -1, 1)

which is a lot easier to explain. The absolute value, computed by abs

will guarantee that the input to the one-third power is positive. However,

3.9. RARE SITUATIONS 125

negative x-values should have negative cube roots, and positive x-values
should have positive cube roots. Therefore, we multiply by sign(x). The
function sign(x) will return −1 for any negative x and +1 for any positive
x, but it will return 0 for x = 0. By multiplying by sign(x) we guarantee
that the computed cube root will have the correct sign. You can see a graph
of the sign(x) function below:

A New Sage Function is Coming!

There are lots of reasons why Sage should have a command to get around
this issue with the one-third power of negative numbers. For example, one
might want to take derivatives and integrals of the cube root function.

With this in mind, just before this book went to the publisher, I started
a discussion on the Google Groups Sage-EDU and Sage-devel, which are
for Sage-related teaching and development topics, respectively. This is the
beauty of open-source software that has been developed by a community.
One can have conversations with the developers, make suggestions, ask for
modifications, debate features, and eventually if a consensus forms, then
changes happen. It is much harder to persuade a corporation to make
changes to its commercial product, especially when there is no line of com-
munication to the developers.

The new function is likely to be called real nth root, or something very
similar, and will always provide the real cube root, fifth root, seventh root,
or whatever you might want.

To Restrict the x-values of a Graph

This short discussion is not related to cube roots, but rather to square roots
or any other function that has a domain other than the entire real line.
When working with functions that have limited domains, once in a great
while, you need to restrict the x-values of a graph.

126 3. ADVANCED PLOTTING TECHNIQUES

Consider the function

f(x) =
√

5x+ 8 + log(3− 9x) +
√

1− 4x

which clearly has a domain of −8/5 ≤ x ≤ 1/4. If you type

plot(sqrt(5*x+8) + log(3-9*x) + sqrt(1-4*x), -2, 2, gridlines=True)

even though you asked for −2 ≤ x ≤ 2, you only get −8/5 ≤ x ≤ 1/4. It is
also accompanied by an error message. Instead, you must do

plot(sqrt(5*x+8) + log(3-9*x) + sqrt(1-4*x), -2, 2,

gridlines=True).show(xmin=-2,xmax=2)

where xmin and xmax explicitly force the x-coordinates to be what you want.

Plot using Show Plot without Show

Chapter 4

Advanced Features of Sage

In this chapter will be found commands and examples for selected topics of
mathematics that were not common enough to be given in Chapter One.
Except in a few places (as noted) the sections are totally independent from
each other, and certainly should not be read in order. Simply dive into
sections of this chapter as you might happen to require one bit of advanced
mathematics or another.

4.1. Using Sage with Multivariable Functions and Equations

Let’s consider the following function

f(x, y) = (x4 − 5x2 + 4 + y2)2

and see what Sage can do with it.
Just as we saw in Section 1.8.1 on Page 38, when we use variables other

than x, unless they are constants like k = 355/113, we need to declare them
as variables using the var command. For example

var(’y’)

f(x,y) = (x^4 - 5*x^2 + 4 + y^2)^2

f(1, 2)

The above code will define the function f(x, y) as desired, and correctly
output the value f(1, 2) = 16. From this, we can see that multivariate
functions work the same way as univariate functions for definition and eval-
uation. However, we can also engage in half-evaluation, and get a function
of fewer variables.

Just as one-variable functions are graphed on two-dimensional pieces of
paper (or computer screens), you can graph two-variable functions in three
dimensional space. This is covered in the electronic-only online appendix
to this book “Plotting in Color, in 3D, and Animations,” available on my
webpage www.gregorybard.com for downloading.

127

128 4. ADVANCED FEATURES OF SAGE

We looked at parametric functions in Section 3.6 on Page 112. One
thing you might want to be able to do is evaluate f(x, y), as above, but with
x = 2t+ 5 and y = 3t− 1, or something similar. We would type

var(’y t’)

f(x,y) = (x^4 - 5*x^2 + 4 + y^2)^2

f(x=2*t+5, y=3*t-1)

and we receive the output

((2*t + 5)^4 + (3*t - 1)^2 - 5*(2*t + 5)^2 + 4)^2

which is clearly true but not very readable.
Alternatively, if we replace the last line with

f(x=2*t+5, y=3*t-1).expand()

then we’ll get the more human-readable output

256*t^8 + 5120*t^7 + 44448*t^6 + 217088*t^5 + 649161*t^4

+ 1214732*t^3 + 1394126*t^2 + 902940*t + 255025

Half-Evaluating a Function:

Consider the following code:

var(’y’)

f(x,y) = (x^4 - 5*x^2 + 4 + y^2)^2

print f(x,y)

print f(x=1)

print f(y=2)

That code produces the following output:

(x^4 - 5*x^2 + y^2 + 4)^2

y^4

(x^4 - 5*x^2 + 8)^2

The first line is the actual function f(x, y) as we had defined it earlier.
The second line is what happens if x is locked at x = 1. In that case, we get
a function of y alone, and it is a rather simple function. The third line is
what happens if y is locked at y = 2. As you might guess, we get a function
of x alone. This process of locking one or more of the variables of a function,
while leaving one or more of the variables of a function free, is called “half
evaluation.”

Working with Parameters

A more extended example of “half-evaluation” is to take a function with
four, five, or six variables, and plug in values for several of them (such as
mass, thrust, g = 9.82, or other coefficients) in order to obtain an equation
in fewer variables.

We’ll see an example of that in Section 4.22.4 on Page 197.

4.2. WORKING WITH LARGE FORMULAS IN SAGE 129

4.2. Working with Large Formulas in Sage

Here we’re going to explore using two large formulas in Sage—one from
finance and one from physics. The finance example is a personal home
mortgage. The physics example is Newton’s Law of Gravitation. In both
cases we’re going to work with some complicated formulas and models, by
writing a chunk of Sage code that eventually grows to about 4–6 lines long.
This section assumes that you’ve read the previous section, Section 4.1,
starting on Page 127.

4.2.1. Personal Finance: Mortgages

This example assumes you know how to do mortgage calculations. If you
don’t, then you might want to read a different example—or perhaps you’d
like to learn about mortgages, in which case you should keep reading. The
following notation, lovingly called “the alphabet soup” by business students,
is fairly standard among finance textbooks, but with some variation.

• The length of the loan (or an investment) is t years.
• The nominal rate of interest per year is r. (Note, 5% is designated

as r = 0.05.)
• The number of times per year that the interest is compounded is
m. For example, quarterly is m = 4 and weekly is m = 52, while
monthly is m = 12 and annually is m = 1.
• The number of compoundings over the life of the loan (or an in-

vestment) is n = mt.
• The interest rate per compounding period (instead of per year) is
i = r/m. For example, 8% compounded quarterly has i = 0.02
while 6% compounded monthly is i = 0.005.
• For loans (or investments) with regularly spaced equal payments,

the amount of that payment is c.
• For loans (or investments) with one initial payment only, that pay-

ment is called the principal and is denoted P .

Some Warmup Problems:

If you deposit $ 1000 once, and leave it for three years at the rate of
4.8% compounded monthly, then r = 0.048, m = 12, i = r/m = 0.004,
t = 3, n = 36, P = 1000. The formula for the amount that you have at the
end is just the compound interest formula (which different books typeset
slightly differently):

A = P
(

1 +
r

m

)mt
= P (1 + i)n

The answer can be obtained in Sage by typing

(1000)*(1 + 0.048/12)^{(12*3)}

which is $ 1154.55.

130 4. ADVANCED FEATURES OF SAGE

If you’re saving for retirement, and want to deposit $ 100 per biweekly
paycheck for 40 years, and invest at the rate of 9.1% compounded bimonthly.
Since there are 52 weeks per year, the biweekly paychecks will come 26 times
per year and m = 26. Then we have t = 40, r = 0.091, i = 0.0035, n = 1040,
and c = 100. The correct formula in this case is the “future value of an
annuity” or the “increasing annuity” formula and is given by

FV = c
(1 + i)n − 1

i
= c

(1 + r/m)mt − 1

r/m

which we can evaluate with

(100)*((1 + 0.0035)^1040 - 1) / 0.0035

obtaining the rather lovely sum of $ 1,052,872.11.
Last but not least, if you want to get a 30-year home mortgage, at

the rate of 5.4% compounded monthly, making house payments of $ 900
per month, then you would have t = 30, m = 12, n = 360, r = 0.054,
i = r/m = 0.054/12 = 0.0045, and c = 900. The correct formula for this
problem is the “present value of an annuity” or the “decreasing annuity”
formula and is given by

PV = c
1− (1 + i)n

i
= c

1− (1 + r/m)mt

r/m

which we can evaluate with

(900)*(1 - (1 + 0.0045)^(-360)) / 0.0045

obtaining the result of $ 160,276.16. Depending on where you live, that can
be a very nice townhouse. For example, if you find a nice place with an
asking price of $ 178,084.62, then putting 10% down would imply a down
payment of $ 17,808.46, leaving $ 160,276.16 for the bank to provide via this
mortgage.

Making a Cost-Per-Thousand Tabulator:

The three warm-up problems above might be easy for you, because you
are fairly advanced in mathematics. Many bank employees are not college
graduates at all, and are incapable of the preceding calculations. To enable
such employees to be able to recruit customers and offer them mortgages,
the “cost per thousand” technique is used.

A “rate sheet” is published by the bank either every day or every week.
These sheets list a “cost per thousand” or “CPT” for each of the bank’s
loans. For example, there should be CPT for a 30-year fixed-rate mortgage,
for a 15-year fixed-rate mortgage, and perhaps three CPTs for car loans
(of 36, 48, and 60 months duration), followed by other loans (for boats, for
education, and so forth).

Continuing with the example above, with 30-year mortgages and 5.4%
compounded monthly, the CPT happens to be 5.6153079187. (I’ll explain
how to calculate that momentarily.) Because you understand mathematics,

4.2. WORKING WITH LARGE FORMULAS IN SAGE 131

if a customer came to you and asked how much the monthly payment would
be for a $ 180,000 house, you’d be able to plug 180,000 into the PV equation
above, plug in n = 360 and i = 0.0045, and just solve for c. However, the
lowest layer of bank employees are unable to do that. Instead they will look
up the CPT on the rate sheet, find that it is 5.6153079187, and just compute

(180)(5.6153079187) = 1010.75 · · ·
enabling them to tell the customer that $ 1010.75 is going to be their monthly
house payment with that mortgage.

Meanwhile, the rate sheet has to come from somewhere. A midlevel
bank employee would compute the CPT while generating the “rate sheet”
by taking

PV = c
1− (1 + i)n

i
solving for c and obtaining

c =
(PV)(i)

1− (1 + i)n

where one can plug in the i and n values. Naturally, PV = 1000. Let’s
compute this now with Sage.

Since c = 1000 is not going to change, we can put as the first line

c=1000

and then, we could define our own function by typing

CostPerThousand (i, n) = (c * i) / (1 - (1+i)^(-n))

as our second line. Note, our setting c = 1000 here is not unlike how we had
set k = 355/113 on Page 32.

Keeping those two lines in there, we can use the function repeatedly as
our third line. For example, for a 30-year mortgage at 6.5% compounded
monthly, we can type as our third line

CostPerThousand (0.065/12, 30*12)

and then if the rate rises to 7% we can replace that line with

CostPerThousand (0.07/12, 30*12)

and so on, and so forth.
Notice that the function name has to be only one word, but by varying

the capitalization that way (which programmers call “Camel Case”), we
could express an idea that was more than one word. Surely it is much easier
to read CostPerThousand than costperthousand or COSTPERTHOUSAND.

While this function is nice, (for example it will save us from agonizing
each time over the placement of the parentheses,) it also isn’t quite perfect.
Our data will be given in terms of the number of years of the loan t, not the
number of payments n = mt = 12t. Likewise, the rate will be the nominal,
published rate r not the per-period rate i = r/m = r/12. One student once
described this to me by saying that the n and i are math-friendly, whereas
the t and r are human-friendly.

132 4. ADVANCED FEATURES OF SAGE

This can be fixed by defining a new function. To avoid any confusion,
our entire code chunk in the Sage Cell Server window should look like the
following:

c=1000

CostPerThousand (i, n) = (c * i) / (1 - (1+i)^(-n))

CostPerThousand1 (r, t)=CostPerThousand(i=r/12, n=12*t)

Now we have made a new formula, which uses the rate in terms of r
as we liked, and the number of years t, not the number of compounding
periods. And now, for a 30 year mortgage at 6.5% compounded monthly,
we can type

CostPerThousand1 (0.065, 30)

and get a more user-friendly input and output. One last reminder: when
working with large sums, such as the cost of a house, we must be careful
never to use a comma as a “thousands separator.” All the digits must be
consecutive, as we learned about on Page 2 and Page 3.

The Grouping Symbols:

Some older math books have the habit of using square brackets, [and], as a
kind of super-parentheses. This was done to avoid having sets of parentheses
inside of other parentheses. Someone raised on such books might be typed
to write

f(i, n) = (c · i)÷
[
1− (1 + i)−n

]
instead of the more modern

f(i, n) = (c · i)÷
(
1− (1 + i)−n

)
which is identical except for the [becoming a (and the] becoming a).

Mathematicians can write what they’d like on paper, but in Sage code,
there is much less flexibility. This is mostly because Sage is built on top of
the computer language Python, and therefore Python conventions must be
respected.

Therefore, one cannot type

CostPerThousand (i, n) = (c * i) / [1 - (1+i)^(-n)]

but must instead type

CostPerThousand (i, n) = (c * i) / (1 - (1+i)^(-n))

Remember, in Sage, the only grouping operators are parentheses. Addi-
tional explanation can be found on Page 2.

4.2.2. Physics: Gravitation and Satellites

Let’s say you’re analyzing a satellite in its orbit around the earth. Newton’s
formula for gravity is

F =
GMeMs

r2s

4.2. WORKING WITH LARGE FORMULAS IN SAGE 133

where G = 6.77 × 10−11N m2/kg2 is the universal constant for gravitation;
Me = 5.9742× 1024 kg is the mass of the earth; next rs is the distance from
the satellite to the center of the earth in meters; and finally Ms kg is the
mass of the satellite.

Surely G and Me will not change, so we can set those as the first two
lines of our chunk of code by typing

G = 6.77 * 10^(-11)

Me = 5.9742 * 10^(24)

just like we had set k = 355/113 on Page 32.
Unlike the mass of the earth, or the universal constant of gravitation,

the distance to the satellite might change somewhat often, and the mass
of the satellite could change also (particularly if it has fuel aboard, which
will be burned during maneuvers). Those two quantities should be variables
and not constants. That means our force function will be a function of two
variables. We would type as our third line:

Force(Ms, rs) = (G * Me * Ms)/(rs^2)

Using these three lines, you can enter (on the fourth line) code such as:

Force(1000, 10 * 10^6)

to get answers. In this case, you are claiming that the mass of the satellite
is 1000 kg and the distance from the satellite to the center of the earth is
107 meters; the answer returned should be 4044.53 Newtons. This notation
is great if you have a large number of r values or Ms values that you’re
interested in, and want to save a lot of typing. You only need to change one
number, or perhaps two, and just repeatedly click “Evaluate.”

Suppose now that you really wanted the function to work in terms of
altitude, as measured from the earth’s surface, and not from the center of
the earth. Well it is easy to realize that you just have to add the radius of
the earth to the altitude to get the distance from the satellite to the center
of the earth. First, you put in the radius of the earth, which is 6378.1 km,
but of course we should switch the number to use meters, in order to avoid
the error of conflicting units.

To avoid confusion, our entire code chunk should now look like

G = 6.77 * 10^(-11)

Me = 5.9742 * 10^(24)

re = 6378100

Force(Ms, rs) = (G * Me * Ms)/(rs^2)

Force1(Ms, alt) = Force(Ms, rs = alt + re)

The fifth line is very interesting. We’ve redefined rs as the sum of the
altitude and the radius of the earth. Also, note that we must never use
commas as a “thousands separator” inside large numbers while programming
in Sage—all the digits must be consecutive, as we learned about on Page 2
and Page 3. Now, we can just go ahead and use Force1. For example, as
our sixth line, we can type

134 4. ADVANCED FEATURES OF SAGE

Force1(1000, 3621900)

which returns 4044.53 N, exactly what we had before. That’s because an
altitude of 3621.9 km is the same as being 107 meters from the center of the
earth. This is true, in turn, because

3621.9 km + 6378.1 km = 10, 000 km

Which function should you use? Force or Force1? I suppose that it
depends upon if the problem you are given is in terms of altitude, or in
terms of r (the distance from the satellite to the center of the earth).

This idea of building functions on top of functions is very powerful. I
have often written large suites of functions in this way—one function on top
of the other function, on top of the next—to model complex phenomena in
Sage. In this manner, the human brain need only consider one small matter
at a time before moving on to the next small component, and therefore huge
and complicated systems are rendered approachable and digestible.

4.3. Derivatives and Gradients in Multivariate Calculus

In Section 1.11 on Page 49, we learned about taking the derivatives of uni-
variate functions. Now we’ll learn about multivariate derivatives.

4.3.1. Partial Derivatives

You’re probably not surprised to learn that Sage can do partial derivatives
very easily. For example, if you have

g(x, y) = xy + sin(x2) + e−x

you can type

g(x,y) = x*y + sin(x^2) + e^(-x)

diff(g(x,y), x)

and get

2*x*cos(x^2) + y - e^(-x)

which is ∂g/∂x. Similarly, you can type

g(x,y) = x*y + sin(x^2) + e^(-x)

derivative(g(x,y), y)

to learn that ∂g/∂y is just x. Note here this really shows how diff and
derivative are synonyms.

You can even find

∂2

∂x∂y
f

by typing derivative(g(x,y), x, y). The answer, of course, is just 1.

4.4. MATRICES IN SAGE, PART TWO 135

4.3.2. Gradients

The next question we might be asked is to find the gradient of a multivariate
function. If you want ∇f then you type

g(x,y) = x*y + sin(x^2) + e^(-x)

g.derivative()

and Sage will correctly calculate the gradient. Alternatively, you can type
diff(g) in place of g.derivative(). In either case, Sage displays

(x, y) |--> (2*x*cos(x^2) + y - e^(-x), x)

which is to remind you that this is a map from a point (x, y) to a pair of
real numbers, and not an ordinary function. Interestingly, the gradient of a
univariate function such as f(x) = 2e−x, done this way, is just the ordinary
first derivative—which is exactly correct according to the laws of calculus.

4.4. Matrices in Sage, Part Two

Unlike the matrix section in Chapter 1 (see Page 19), this section does
assume familiarity with the first semester of Matrix Algebra (sometimes
called Linear Algebra). However, I have endeavored to make this section as
readable and intuitive as possible. Those readers who are unfamiliar with
matrix algebra, and who wish to acquire expertise, would do well to read
Robert Beezer’s A First Course in Linear Algebra, published electronically
in 2007. Not only is that textbook entirely free, it is written with Sage in
mind, and it is extremely readable.

4.4.1. Defining Some Examples

We’re going to consider the following examples in this section. First, con-
sider the very humble 3× 3 matrix:

A =

 1 2 3
4 5 6
7 8 −1


and also consider ~b =< 24, 63, 52 > as well as ~c =< 10, 14, 8 >.

Note, that some books prefer to write ~b =< 24, 63, 52 > for a vector,
and B = (24, 63, 52) for a point in space. This distinction is an excellent
one—useful to students and faculty alike—and mathematics books should
use it. However, this notation is also a recent innovation, and might be
unfamiliar to many readers who are accustomed to seeing parentheses used
for both points and vectors.

Because Sage already uses the symbols < and > for comparisons, namely
“less than” and “greater than,” it is unfortunately necessary that Sage (like
all but the most recent textbooks) cannot use the new notation. This is
unavoidable. However, the vector command removes all confusion, as you
will see momentarily.

136 4. ADVANCED FEATURES OF SAGE

By this point you know how to define A with

A = matrix(3, 3, [1, 2, 3, 4, 5, 6, 7, 8, -1])

as we learned on Page 22, but for ~b and ~c we have choices. We can consider
~b to be a matrix with 3 rows and 1 column. In that case we would write

b = matrix(3, 1, [24, 63, 52])

but there is also the vector command, which has the following syntax:

c = vector([10, 14, 8])

which requires less typing and is more human readable.
Take a moment in a Sage Cell Server to define these three objects, namely

A, ~b, and ~c. Throughout the remainder of this entire section, just keep those
three lines in the Sage cell. This way you do not have to retype them, and
you can just change the last line of your cell as we learn various operations.

4.4.2. Matrix Multiplication and Exponentiation

The * symbol or asterisk is used to perform matrix multiplication just as
it is used to perform the multiplication of rational numbers. For example,
one can type A*b or A*A and get the desired answer. Similarly, the addition
and the subtraction of matrices are done with the usual plus sign and minus
sign, as if you were adding or subtracting numbers.

It is useful, at times, to have the identity matrix ready. You could define
the identity matrix with

Id = matrix(3, 3, [1, 0, 0, 0, 1, 0, 0, 0, 1])

if you like. However, that can be tedious, especially for larger sizes. In
particular, I often have trouble getting the right number of zeros to appear
in the right places. Instead, you can define the identity matrix by using

Id = identity_matrix(3)

which is much shorter. Notice that I have the habit of calling the identity
matrix Id and not I. This is merely for readability, as a single capital “I”
can be mistaken for a lowercase L, or the number one, or the pipe above the
backslash. You can call the identity matrix whatever you like. It is useful
to see that Id*A and A*Id will produce the correct answers, namely A.

You can also raise matrices to various powers. The following code:

A = matrix(3, 3, [1, 2, 3, 4, 5, 6, 7, 8, -1])

print A*A*A

print

print A^3

demonstrates that Sage can perform the matrix multiplication much faster
than a human. It also shows how matrix exponents use the same notation
as the exponent of any number would.

In order to preserve the rule (An)(Am) = An+m from the real-number
world, mathematicians define negative exponents with A−n = (A−1)n, pro-
vided that A is invertible. Also A0 is the identity matrix. There is actually

4.4. MATRICES IN SAGE, PART TWO 137

a notion of the “square root” of a matrix, but it is rarely used and we will
not go into it here.

4.4.3. Right and Left System Solving

Now let’s use the objects defined earlier in this section to solve some prob-

lems. To find a vector ~x such that A~x = ~b we would type A.solve right(b)

and learn that the solution is ~x =< 7, 1, 5 >. We can also verify this by
typing

A*vector([7,1,5])

and we get the vector < 24, 63, 52 > back, as desired.
To find a vector ~y such that ~yA = ~c we would type A.solve left(c)

and learn that the solution is ~y =< 3, 0, 1 >. As before, we would verify
this by typing

vector([3,0,1])*A

and we get the vector < 10, 14, 8 > back, as desired. There is a minor
technical point here. The vector < 7, 1, 5 > was a column vector, or a 3-
row, 1-column matrix. The vector < 3, 0, 1 > was a row vector, or a 1-row,
3-column matrix. Sage will always try to figure out if you meant a row
vector or a column vector when using the vector command. However, some
instructors might be less lenient, and require you to write instead ~yTA in
place of writing ~yA.

The backslash operator can be used to abbreviate solve right. Note
that the backslash is not the one with the question mark, but the one with
the pipe. (The one near the question mark is called the “forward slash” or
solidus.) We would type

A \ b

as an abbreviation for A.solve right(b). This extremely concise abbrevi-
ation is a throwback to very old language MATLAB, which is still in use in
industry, and which has the same backslash operator.

We can also type A.augment(b) to obtain the matrix 1 2 3 24
4 5 6 63
7 8 −1 52


in preparation for using the rref command that we learned on Page 22. As
we saw earlier, Sage does not draw the vertical line to mark the last column
of the matrix in a special way. Some textbooks leave that vertical line out
as well. To take the augment-and-RREF strategy, we would type

A = matrix(3, 3, [1, 2, 3, 4, 5, 6, 7, 8, -1])

b = matrix(3, 1, [24, 63, 52])

M = A.augment(b)

138 4. ADVANCED FEATURES OF SAGE

print "Before:"

print M

print

print "After:"

print M.rref()

Of course, the print commands aren’t really necessary but they are
very informative to the user. Some mathematicians will use the backslash
operator or the solve right command. However, this augment-and-RREF
strategy does have its advantages.

Consider changing the last entry in A, namely A33 to 9 instead of −1.
Then run our augment-and-RREF code again.

We see the following output

Before:

[1 2 3 24]

[4 5 6 63]

[7 8 9 52]

After:

[1 0 -1 0]

[0 1 2 0]

[0 0 0 1]

This is extremely informative. From the row of zeros followed by a 1, we
see that the original system of equations has no solution. We can also see
that the first and second column are effective, or elementary vectors, while
the third column is defective, or a non-elementary vector. If you know what
“rank” means in linear algebra, we can see that the matrix has rank 2. If
you don’t know what that means, do not worry about it right now. Let’s
see what would happen if we were to put the same question to the backslash
operator.

If we were to type

A = matrix(3, 3, [1, 2, 3, 4, 5, 6, 7, 8, 9])

b = matrix(3, 1, [24, 63, 52])

A \ b

we would get the response:

ValueError: matrix equation has no solutions

which is undeniably true but not as informative as the augment-and-RREF
strategy.

What happens if you use the backslash when there are infinitely many
solutions? Let’s try it and find out! The commands:

A = matrix(3, 3, [1, 2, 3, 4, 5, 6, 7, 8, 9])

4.4. MATRICES IN SAGE, PART TWO 139

d = vector([6, 15, 24])

A \ d

produce the vector < 0, 3, 0 >, which is a perfectly valid solution. On the
basis of this output we would be justified in assuming that this is the unique
solution to that problem. However, we can also see that < 1, 1, 1 > is a
solution. When there are infinitely many solutions, the backslash operator
simply picks one. In particular, it will pick the solution formed by making
all the free variables equal to zero.

We could instead type

A = matrix(3, 3, [1, 2, 3, 4, 5, 6, 7, 8, 9])

d = vector([6, 15, 24])

B = A.augment(d)

B.rref()

to get the output

[1 0 -1 0]

[0 1 2 3]

[0 0 0 0]

which, if you know how to read it, is much more informative. The circum-
stance of having an infinite number of solutions to a linear system (in other
words, having a free variable) is discussed in Section D on Page 307.

Last but not least, we must recall that A.rref() is asking for a “reduced
row-echelon form.” However, there is also the “row-echelon form” or REF.
This half-completed version of the RREF is extremely useful to know about
if you have to work with matrices by hand, but in the computer age, its
role is secondary at best. The command to compute the REF instead of the
RREF is simply

A.echelon_form()

4.4.4. Matrix Inverses

Some matrices have inverses, and some do not. We can compute a matrix
inverse with A.inverse(). For example,

A = matrix(3, 3, [1, 2, 3, 4, 5, 6, 7, 8, -1])

B = A.inverse()

print B

produces the output

[-53/30 13/15 -1/10]

[23/15 -11/15 1/5]

[-1/10 1/5 -1/10]

140 4. ADVANCED FEATURES OF SAGE

You can verify the correctness of the inverse by asking for A*B or alter-
natively B*A, both of which will return the identity matrix. You can also
replace A.inverse() with A−1, as below:

A = matrix(3, 3, [1, 2, 3, 4, 5, 6, 7, 8, -1])

B = A^(-1)

print B

You might be wondering what happens if you invert a singular matrix?
We can simply change the −1 in the lower right-hand corner of the matrix
into a 9. Then the matrix is singular. We get an error message consisting
of a lot of garbage, followed by

ZeroDivisionError: input matrix must be nonsingular

Sometimes it is useful to compute the inverse of a matrix “the long way.”
To accomplish this, we attach an identity matrix of the appropriate size, to
the right of the original matrix. For example, the code

A = matrix(3, 3, [1, 2, 3, 4, 5, 6, 7, 8, 9])

B = identity_matrix(3)

C = A.augment(B)

print "Before:"

print C

print "After:"

print C.rref()

produces the output below.

Before:

[1 2 3 1 0 0]

[4 5 6 0 1 0]

[7 8 9 0 0 1]

After:

[1 0 -1 0 -8/3 5/3]

[0 1 2 0 7/3 -4/3]

[0 0 0 1 -2 1]

As you can see, the matrix is not invertible. The RREF-process got
“stuck” in the third column. This is much more informative than the error
message we would get if we tried to just invert A with A.inverse().

4.4.5. Computing the Kernel of a Matrix

For any specific matrix A, there are a lot of times when it is useful to know
what set of vectors ~v will have ~vA = ~0. Likewise, there are lots of times
when it is useful to know what set of vectors ~v will have A~v = ~0. These two
sets are called the “left kernel of A” and the “right kernel of A,” respectively.

Let’s explore an example:

4.4. MATRICES IN SAGE, PART TWO 141

A = matrix(2, 2, [-2, 7, 0, 0])

print A.left_kernel()

print "Test:"

print vector([0, 1])*A

print A*vector([0, 1])

produces the output:

Free module of degree 2 and rank 1 over Integer Ring

Echelon basis matrix:

[0 1]

Test:

(0, 0)

(7, 0)

It is noteworthy that our test code verifies that ~vA = ~0, as desired, but
A~v 6= ~0, as it turns out. This is to emphasize that the left kernel and right
kernel are not the same sets.

I’d now like to explain the first two lines of the output above. As we’ll
see throughout these examples, the “degree 2” part refers to the dimension
of the vectors in the kernel. The “rank” is the dimension of the space which
gets sent to zero—this is usually called the “nullity” of A, but one should
take care to differentiate between “left nullity” and “right nullity.” It is
important to emphasize that the rank of the left kernel, the rank of the
right kernel, and the rank of A itself, can all be different.

For example, the matrix[
1 2 3 4 5
6 7 8 9 0

]
has rank 2, but its left kernel is rank 0 (just the zero vector) and its right
kernel is rank 3. You can find these numbers immediately with the functions
A.right nullity(), A.left nullity(), and A.rank(), for any matrix A.

Meanwhile, the equivalent code using right kernel would be as follows:

A = matrix(2, 2, [-2, 7, 0, 0])

print A.right_kernel()

print "Test:"

print vector([7, 2])*A

print A*vector([7, 2])

which produces the output

Free module of degree 2 and rank 1 over Integer Ring

Echelon basis matrix:

[7 2]

Test:

142 4. ADVANCED FEATURES OF SAGE

(-14, 49)

(0, 0)

Again, we see that A~v = ~0, as desired, but that ~vA 6= ~0. For sure, the
left kernel and right kernel are distinct mathematical objects. Sometimes
the right kernel is called the “null space” of A. For that reason, if one
says the kernel of A in mathematics, they usually mean the right kernel.
However, in Sage, A.kernel() refers to the left kernel, which is extremely
unusual. The wise programmer will be explicit and use A.right kernel()

and A.left kernel() so that there can be no possible confusion.
By the way, I was discussing this once with Prof. William Stein, and

he specifically asked me to mention in the book that “real programmers”
always check the documentation. No one actually remembers fine details
like the distinction between the left kernel and the right kernel. Even if you
are confident that you remember which is which, it is better to check anyway
(using the techniques of Section 1.10 on Page 47) to avoid the possibility of
being mistaken.

To show how the concept works more powerfully, I wrote a program for
you. See Figure 1 on Page 143. Here you see a larger matrix and we compute
the left kernel and right kernel very carefully. You can also see that if ~a and
~b are in the kernel, then r1~a + r2~b will also be in the kernel, for any real
numbers r1 and r2 that you might want to choose.

Applications of Computing Kernels

We just went through a lot of effort to compute the left kernel and right
kernel of a matrix. Perhaps you might be curious what this is used for.
There are several uses in pure mathematics. In applied mathematics, one
use has to do with linear systems of equations with infinitely many solutions.

Another use, from cryptography, is the Quadratic Sieve algorithm for
factoring the product of two large prime numbers. This is a method of at-
tacking the RSA cryptosystem. As it comes to pass, I discuss the Quadratic
Sieve extensively in Chapter 10 of another book that I’ve written, Algebraic
Cryptanalysis, published by Springer in 2009. While most of that book re-
quires knowledge from a previous course in cryptography, the chapter on the
Quadratic Sieve is somewhat independent and would be readable by anyone
who has taken a course in Number Theory or perhaps instead two semesters
of Abstract Algebra, sometimes called Modern Algebra.

4.4.6. Determinants

Let’s return briefly to the matrix that we opened this lesson with. If we
wanted to know its determinant, all we would need to do is type is the
following:

A = matrix(3, 3, [1, 2, 3, 4, 5, 6, 7, 8, -1])

det(A)

4.4. MATRICES IN SAGE, PART TWO 143

Left Kernel Code

A = matrix(4, 4, [1, 2, 3, 0, 4, 5, 6, -1,

7, 8, 9, -2, 12, 15, 18, -3])

print "Input Matrix:"

print A

print

print "Nullspace:"

print A.left_kernel()

print

xvec = vector([1, 1, 1, -1])

yvec = vector([0, 3, 0, -1])

print "Tests:"

print xvec, "maps to", xvec*A

print yvec, "maps to", yvec*A

print (xvec+yvec), "maps to", (xvec+yvec)*A

print (xvec-2*yvec), "maps to", (xvec-2*yvec)*A

print (17*xvec + 47*yvec), "maps to",

print (17*xvec + 47*yvec)*A

print (71*xvec + 888*yvec), "maps to",

print (71*xvec + 888*yvec)*A

Left Kernel Output

%%% left_kernel

Input Matrix:

[1 2 3 0]

[4 5 6 -1]

[7 8 9 -2]

[12 15 18 -3]

Nullspace:

Free module of degree 4 and rank 2 over Integer Ring

Echelon basis matrix:

[1 1 1 -1]

[0 3 0 -1]

Tests:

(1, 1, 1, -1) maps to (0, 0, 0, 0)

(0, 3, 0, -1) maps to (0, 0, 0, 0)

(1, 4, 1, -2) maps to (0, 0, 0, 0)

(1, -5, 1, 1) maps to (0, 0, 0, 0)

(17, 158, 17, -64) maps to (0, 0, 0, 0)

(71, 2735, 71, -959) maps to (0, 0, 0, 0)

Right Kernel Code

A = matrix(4, 4, [1, 2, 3, 0, 4, 5, 6, -1,

7, 8, 9, -2, 12, 15, 18, -3])

print "Input Matrix:"

print A

print

print "Nullspace:"

print A.right_kernel()

print

xvec = vector([1, 1, -1, 3])

yvec = vector([0, 3, -2, 3])

print "Tests:"

print xvec, "maps to", A*xvec

print yvec, "maps to", A*yvec

print (xvec+yvec), "maps to", A*(xvec+yvec)

print (xvec-2*yvec), "maps to", A*(xvec-2*yvec)

print (17*xvec + 47*yvec), "maps to",

print A*(17*xvec + 47*yvec)

print (71*xvec + 888*yvec), "maps to",

print A*(71*xvec + 888*yvec)

Right Kernel Output

%%% this is using "right_kernel"

Input Matrix:

[1 2 3 0]

[4 5 6 -1]

[7 8 9 -2]

[12 15 18 -3]

Nullspace:

Free module of degree 4 and rank 2 over Integer Ring

Echelon basis matrix:

[1 1 -1 3]

[0 3 -2 3]

Tests:

(1, 1, -1, 3) maps to (0, 0, 0, 0)

(0, 3, -2, 3) maps to (0, 0, 0, 0)

(1, 4, -3, 6) maps to (0, 0, 0, 0)

(1, -5, 3, -3) maps to (0, 0, 0, 0)

(17, 158, -111, 192) maps to (0, 0, 0, 0)

(71, 2735, -1847, 2877) maps to (0, 0, 0, 0)

Figure 1. The very large example for the left kernel and
right kernel commands.

Then we would see that the determinant is 30. If we change the −1 to a
9, then the determinant will become 0. (Don’t forget to hit “Evaluate” after
making that change.) This makes sense, because we saw that A had a unique
solution when we tried system solving with the vector < 24, 63, 52 >, and
the −1 still present. On the other hand, we saw that A \ b had no solutions

144 4. ADVANCED FEATURES OF SAGE

Operation Math Notation Sage Syntax Expected Answer

Addition ~a+~b a + b < 5, 7, 9 >

Subtraction ~a−~b a - b < −3,−3,−3 >
Scalar Product 3~a 3*a < 3, 6, 9 >

Dot Product ~a ·~b a.dot product(b) 32

Cross Product ~a×~b a.cross product(b) < −3, 6,−3 >

Norm or Length ||~a|| norm(a)
√

14

Table 1. The Basic Vector Operations in Sage

when we tried system solving with that same vector, but after changing the
−1 into a 9.

The cases of “infinitely many solutions” and “no solutions,” can and will
occur only with determinant equal to zero. The case of a unique solution is
what occurs if and only if the determinant is non-zero.

4.5. Vector Operations

Vectors come up in all sorts of classes, including Linear Algebra and Multi-
variate Calculus, as well as Physics I and its successors. Sage is very good
at working with vectors. Here we will explore the basic operations of adding,
subtracting, taking a scalar multiple, computing a dot product, computing
a cross product, and measuring the norm of a vector. Then we will combine
them by exploring how to compute the angle between two vectors. We’ll
use, as our running example, the following two vectors:

~a =< 1, 2, 3 > and ~b =< 4, 5, 6 >

Each of the commands in Table 1 is intended to be prefaced by the
definitions of these vectors, namely via:

a = vector([1, 2, 3])

b = vector([4, 5, 6])

For an example of how to combine several of these to perform a useful

task, let’s find the angle between ~a and ~b. We must recall the formula

cos θ =
~a ·~b
||~a|| ||~b||

and then we can type

a = vector([1, 2, 3])

b = vector([4, 5, 6])

dotproduct = a.dot_product(b)

myfraction = dotproduct / (norm(a) * norm(b))

theta = arccos(myfraction)

4.6. WORKING WITH THE INTEGERS AND NUMBER THEORY 145

print N(theta), "radians"

print N(theta*180/pi), "degrees"

That will result in the following output:

0.225726128552734 radians

12.9331544918991 degrees

4.6. Working with the Integers and Number Theory

The study of problems that deal with the integers is called “number the-
ory.” It was a famously pure subject for centuries, but in the last fifty
years some amazing applications have come up, including cryptography and
integer programming.

This subject can be started at a very young age (e.g. “what is a prime
number?”) but can be very advanced too. Many Ph.D. dissertations are
written every year with new results in number theory. Mostly, number
theory is about writing proofs, and one might imagine that Sage is not very
useful for proof writing. Actually, Sage is very good at working with the
integers to help you work out specific examples on what the instruments of
number theory do to specific integers. This can help you understand new
concepts more intimately, and I find it can form a bridge between the lecture
on a topic and the time when you are really ready to write serious proofs
about a topic.

For example, you can type factor(-2007) to find the factorization of
that integer, which is

-1 * 3^2 * 223

and likewise

factor(2008)

produces the answer

2^3 * 251

To find the next prime number after one million, you can type

next_prime(10^6)

and discover the answer is 1,000,003.
You can also test a number for primality. Consider is prime(101) or

alternatively is prime(102). Of course, Sage says True for 101, and False

for 102. Last but not least, you can find all the primes in a certain interval.
For example,

prime_range(1000,1100)

gives you all the prime numbers between 1000 and 1100.

146 4. ADVANCED FEATURES OF SAGE

4.6.1. The gcd and the lcm

To find the “greatest common denominator” or “gcd” of two numbers, per-
haps 120 and 64, just type

gcd (120, 64)

and you will learn that the answer is 8. This makes sense because 120/8 = 15
while 64/8 = 8, and as you can see, 15 and 8 share no common factors. More
explicitly, we can look at the prime factorizations 15 = 5×3 and 8 = 2×2×2.
Another way of looking at that is

120 = 23 × 3× 5 while 64 = 26

and, as you can see, all that 120 and 64 have in common is just 23, which
equals 8. Therefore, the gcd is 8.

Likewise, you can find the “least common multiple” or lcm. This is done
by typing

lcm(120, 64)

from which you learn that the lcm is 960. This makes sense because of the
ratios 960/120 = 8 and also 960/64 = 15, and again 8 shares no factors with
15. A mathematician would say “8 is coprime to 15.” Some authors say
“mutually prime” instead of “coprime.”

Another way to look at it is that the lcm should be

26 × 31 × 51 = 960

because the 2 appears 6 times in 64 and 3 times in 120 (thus a maximum
of 6), while the 3 and 5 both appear 0 times in 64 and 1 time in 120 (thus
a maximum of 1 each). Raising each of those primes (2, 3, and 5) to those
powers (6, 1, and 1) gives the lcm.

Before we continue, one more example is helpful. Let’s work with slightly
larger numbers, perhaps 3600 and 1000. First, we do the prime factorizations

3600 = 24 × 32 × 52 while 1000 = 23 × 53

and we can compute the lcm by taking the maximum exponent each time

24 × 32 × 53 = 18, 000

and the gcd by taking the minimum exponent each time

23 × 30 × 52 = 200

Take a moment to verify that 200 goes into both 1000 and 3600, as well
as the fact that no higher number will. Next, take another moment to verify
that both 1000 and 3600 go into 18,000, but there is no lower number for
which that’s true. And of course, the product of the numbers divided by
the gcd is the lcm, and the product of the numbers divided by the lcm is the
gcd. A key idea here is to realize that the prime factorization of a number
communicates an enormous amount of information about that number.

If you want to take the gcd of many numbers at once (for example 120,
55, 25, and 35), there’s no need to do

4.6. WORKING WITH THE INTEGERS AND NUMBER THEORY 147

gcd(120, gcd(55, gcd(25, 35)))

because you can do instead

gcd([120, 55, 25, 35])

to get 5 and likewise

lcm([120, 55, 25, 35])

to get 46,200. This is another example of a list in Sage. You can enclose
any data with [and], and separate the entries with commas, to make a
list. This is notation that Sage inherited from the computer language called
Python.

4.6.2. More about Prime Numbers

One neat trick is that if you wanted to find the 54,321th prime number, you
could type

nth_prime(54321)

and discover that it is 670,177. You can double check this with

factor(670177)

which returns itself, confirming that the number is prime.
One of the most fascinating things in mathematics is the distribution of

the prime numbers. For example, you might want to see how the function
“nth prime” grows as x grows. In plainer English, how large is the millionth
prime? the billionth prime? or the trillionth prime?

It turns out that a good approximation for the size of the xth prime is

f(x) = 1.13x loge x

but there are better approximations, also.
We can test this with

f(x) = 1.13*x*log(x)

print f(10^6)

print nth_prime(10^6)

print f(10^7)

print nth_prime(10^7)

That code produces produces the output

1.56115269304996e7

15485863

1.82134480855829e8

179424673

and after adjusting for the scientific notation, we can see that the estimate
and reality are within about 1% of each other.

148 4. ADVANCED FEATURES OF SAGE

4.6.3. About Euler’s Phi Function

Sometimes it is useful to know how many integers are coprime to x, from
the range 1 to x. For example, how many numbers from 1 to 10 share a
factor with 10, and how many are coprime with 10.

The prime divisors of 10 are 2 and 5, and thus any number whose prime
factorization contains 2s and 5s will share a factor with 10. These include

{2, 4, 5, 6, 8, 10}
and therefore the other numbers

{1, 3, 7, 9}
which have no 2s and no 5s in their factorizations at all, are coprime with
10. In particular, if you know what modular arithmetic is, then these are
the numbers that have “multiplicative inverses” or “reciprocals” mod 10.
Since 4 numbers are coprime to 10, we will write φ(10) = 4.

In general, there are φ(n) numbers z with 1 ≤ z ≤ n, such that z is
coprime to n. This is kind of an inside-out way of defining a mathematical
function, but it turns out that φ is extremely useful when working with
modular arithmetic, and in especially in cryptography.

Even if you don’t know what modular arithmetic is, consider 7. Each of

{1, 2, 3, 4, 5, 6}
is coprime to 7, because the only prime that divides 7 is 7, and 7 does not
divide any of those. So, 6 out of the 6 numbers are coprime to 7, and we
would then write φ(7) = 6.

Actually, it will always be the case for a prime number that φ(p) = p−1.
On the other hand, consider 12. Then among

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
we see that

• both 2 and 12 are divisible by 2;
• both 3 and 12 are divisible by 3;
• both 4 and 12 are divisible by 2;
• both 6 and 12 are divisible by either 2 or 3;
• both 8 and 12 are divisible by 2;
• both 9 and 12 are divisible by 3;
• both 10 and 12 are divisible by 2.

For these reasons, we exclude 2, 3, 4, 6, 8, 9, and 10 from our list.
Finally, this means that only 1, 5, 7, and 11 are coprime to 12, a mere four
integers, and thus we write φ(12) = 4.

This strategy of listing the numbers and checking, one at a time, is nice
for small numbers, but it wouldn’t be possible for a 100-digit number, such
as when working with cryptography. However, Sage can compute φ(n) with
a single command. All you need to do in Sage is type

euler_phi(12)

4.6. WORKING WITH THE INTEGERS AND NUMBER THEORY 149

and then you learn that the answer is 4. It is called “euler phi” because
it was discovered by Leonhard Euler (—), who also discovered the
number

e ≈ 2.718281828 · · ·
and many other mathematical concepts. He still holds the record for the
largest number of published papers by a mathematician, even though he’s
been dead for more than 230 years.

A Fun Challenge:

As it comes to pass, if p and q are distinct prime numbers, the value of φ(pq)
is very easy to calculate. However, I’m not going to tell you what the formula
is. I think it would be great fun for you to just try a bunch of numbers of
the form pq and see if you can discover the formula for yourself—it isn’t too
hard. Just remember that “distinct” primes implies p 6= q.

4.6.4. The Divisors of a Number

Meanwhile, consider the set of divisors of a number. If you want to know
the set of divisors of 250, which means the set of positive integers dividing
250, you would type

divisors(250)

which results in the following list:

[1, 2, 5, 10, 25, 50, 125, 250]

Likewise, if you wanted to know the set of divisors of 312,500 then type

divisors(312500)

which gives the output

[1, 2, 4, 5, 10, 20, 25, 50, 100, 125, 250, 500, 625, 1250, 2500,

3125, 6250, 12500, 15625, 31250, 62500, 78125, 156250, 312500]

but remember, it is very important to not have any commas separating
the thousands, when inputting large numbers into Sage. (This means that
you cannot have a comma between the 2 and the 5 in 312,500.)

Just like φ, there are two fun number-theoretic functions that come up
with divisors. The size of the set of divisors of n is denoted τ(n), where
as the sum of the set of divisors of n is1 denoted σ(n). The symbol σ is
the Greek letter “sigma” and the symbol τ is the Greek letter “tau.” For
example, we just saw the divisor list for 250. There were 8 divisors, and so
τ(250) = 8. On the other hand,

1 + 2 + 5 + 10 + 25 + 50 + 125 + 250 = 468

and thus σ(250) = 468. We can compute σ in Sage with sigma(250). A
memory hook to keep these from getting mixed up in your mind is that

1Be forewarned, some statisticians are offended the number theorists have high-jacked
the symbol σ for this purpose, whereas throughout science, engineering, and statistics, σ
is the symbol for the standard deviation.

150 4. ADVANCED FEATURES OF SAGE

sigma is the Greek letter equivalent to our “s,” and “sum” begins with “s.”
However, there is no “s” in “tau” nor in “count.” Likewise, both “tau” and
“count” have a “t,” but “sum” and “sigma” have no “t.” Keep in mind,
σ(n) sums the divisors, while τ(n) counts the divisors.

Sometimes in number theory, we want to calculate the sums of the
squares or cubes of the divisors. Consider that 45 has as its divisors

divisors(45) = {1, 3, 5, 9, 15, 45}

so we have sigma totaling to 78, because

1 + 3 + 5 + 9 + 15 + 45 = 78

Accordingly, the sum of squares would be

12 + 32 + 52 + 92 + 152 + 452 = 2366

and with cubes

13 + 33 + 53 + 93 + 153 + 453 = 95, 382

but in Sage the commands for that are sigma(45, 2) for squares and
sigma(45, 3) for cubes.

Likewise, sigma(45, 1) is the same as sigma. There are two ways
to compute τ in Sage. One way is given by sigma(3600, 0) which just
tabulates 1 for each divisor. In other words, each divisor is raised to the 0th
power, and thus becomes 1. Then, if you add up all those 1s, you learn how
many divisors there are.

Another way to compute τ(250) would be to type

len(divisors(250))

which returns the length of the list of the divisors of 250—well, that’s exactly
what τ means. The len keyword in Python will return the length of any
list, regardless of the type of problem being attempted.

Amicable Pairs of Numbers

Related to this topic is an Arab tradition2 from the medieval period. Con-
sider two particular numbers 220 and 284. The divisors of 220 are

divisors(220) = {1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110, 220}

and then they would calculate

1 + 2 + 4 + 5 + 10 + 11 + 20 + 22 + 44 + 55 + 110 = 284

but on the other hand, the divisors of 284 are

divisors(284) = {1, 2, 4, 71, 142, 284}

2While the amicable numbers appeared in the writings of the Ancient Greeks, the first
mathematician to write theorems about them was Al-Sabi Thabit ibn Qurra al Harrani
(–), usually called Thebit or Thebith in Western European books, who was more
known for astronomical and geographical work.

4.6. WORKING WITH THE INTEGERS AND NUMBER THEORY 151

which sum up to
1 + 2 + 4 + 71 + 142 = 220

Therefore we see 220 and 284 are intimately related. The technical term
is that 220 and 284 are an “amicable pair” of integers. The Arabs found
this so moving that they inscribed these numbers on jewelry that they would
give to their spouses, signifying an intimate relationship. These are called
Amicable Pairs—220 representing the young lady, and 284 representing the
young gentleman.

Observe that we omitted n when summing the divisors of n in this case.
You can find this in Sage via

sigma(220)-220

and

sigma(284)-284

Two other examples of amicable pairs are 1184 and 1210, as well as 2620
and 2924.

4.6.5. Another Meaning for Tau

As you know, some fractions like 1/4 and 1/2 as well as 1/25 can be ex-
pressed as decimal fractions which terminate. Others, like 1/3 or 1/9 will
repeat. It is an interesting theorem that a fraction can be expressed as an
exact terminating decimal fraction of n decimal places (or fewer) if and only
if the denominator divides 10n. Take a moment to convince yourself of this,
or alternatively, consider the following example. If we want to know what
denominators result in a two-decimal-place (or fewer) exact terminating dec-
imal, we would just need to see what positive integers divide 100. Those
would be the permissible denominators. In Sage we’d type

divisors(100)

and then get

[1, 2, 4, 5, 10, 20, 25, 50, 100]

which are the only denominators which are given exactly as a terminating
decimal with only one or two decimal places.

In binary, the analogous rule would be 2n. It is obvious that the only
positive integers which divide 2n are the numbers 1, 2, 4, 8, . . . , 2n. In gen-
eral, for numbers “base b,” the admissible denominators for fractions using
two or fewer digits past the decimal point would be the divisors of b2. So
for binary, 22 = 4, and the denominators are [1, 2, 4].

As you can see, we can use this criterion for seeing which number bases
are convenient for fractions, and which number bases are not. We can set
ourselves up as judges, to compare the binary, decimal, Mayan (base 20)
and Babylonian (base 60) systems.

Let’s first consider the Babylonian numbering system which is base 60.
Using divisors(3600), we learn that two symbols (or fewer) would be
sufficient to describe any fraction with the following denominators:

152 4. ADVANCED FEATURES OF SAGE

[1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 30, 36,

40, 45, 48, 50, 60, 72, 75, 80, 90, 100, 120, 144, 150, 180, 200,

225, 240, 300, 360, 400, 450, 600, 720, 900, 1200, 1800, 3600]

For the Mayan system (base 20), we have a shorter list, obtained with
divisors(400).

[1, 2, 4, 5, 8, 10, 16, 20, 25, 40, 50, 80, 100, 200, 400]

As you can see, for each base, we now know how many admissible de-
nominators exist.

• Base 2, there are 3 denominators. (Excluding 1, there are only 2.)
• Base 10, there are 9 denominators. (Excluding 1, there are only 8.)
• Base 20, there are 15 denominators. (Excluding 1, there are 14.)
• Base 60, there are 45 denominators. (Excluding 1, there are 44.)

Note: What we are really doing is computing τ(n2).

As you can see, the Babylonian system is most convenient for simple
division of products, livestock, and money during trade. Not only are there
44 ways to write fractions, exactly, using two symbols past the units place,
but the list begins with

{1, 2, 3, 4, 5, 6, 8, 9, 10, 12, . . .}
namely every possible denominator up to and including 12 with the excep-
tion of 7 and 11. Perhaps it is unsurprising that we use base 60 for angles
in geometry and trigonometry as a result, as well as dividing hours into
minutes and seconds.

4.6.6. Modular Arithmetic

To find out what 1939 is mod 37, you can type

1939 % 37

but the % operator takes the modular reduction only of the nearest number,
unless parentheses are used. This means that to evalulate

(32)4 + 2 mod 5

you must not type

3^2*4 + 2 % 5

which evaluates to 38, but rather

(3^2*4 + 2) % 5

which gives 3, the correct answer.
The opposite of the “mod” operator is the integer quotient. To find the

integer quotient of a number, use
25 // 4

to get 6. This is the quotient 25/4 = 6.25 rounded down. More precisely,
x//y = z means that z is largest integer such zy ≤ x. Since (7)(4) = 28,
we can see that (6)(4) = 24 is the largest possible way to have (z)(4) ≤ 25,
with z being an integer.

4.7. SOME MINOR COMMANDS OF SAGE 153

4.6.7. Further Reading in Number Theory

For the reader who would like to further explore number theory, I have two
books to recommend. The first is slightly easier: An Introduction to Number
Theory with Cryptography, by James S. Kraft and Lawrence C. Washington,
published in 2013 by Chapman & Hall.

The second is more Sage-focused, and has been written by the founder
of Sage, Prof. William Stein. The title is Elementary Number Theory:
Primes, Congruences, and Secrets: A Computational Approach, published
by Springer under the series “Undergraduate Texts in Mathematics” in 2008.

4.7. Some Minor Commands of Sage

Here, we list a few commands that come up from time to time. They can
be very useful in the situations that require them.

min(x,y) Returns either x or y, whichever is smaller.
max(x,y) Returns either x or y, whichever is greater.
floor(x) Just round x down, or bxc
ceil(x) Just round x up, or dxe
factorial(n) This is n!, also called “n factorial.”

binomial(x,m) This is written
(
x
m

)
or x!

m!(x−m)! or xCm

binomial(x,m) * m! This is usually written x!
m! or xPm

4.7.1. Rounding, Floors, and Ceilings

As you can see, the floor command rounds a number down, and the ceil

command rounds a number up.
In older books, the “floor” function is sometimes called “The Greatest

Integer Function.” This is because it can be defined by “the greatest integer
that is less than or equal to x.” Some older mathematics books will write [x]
instead of bxc. I suppose if you wanted, you could define the ceiling function
by “the least integer that is greater than or equal to x.”

4.7.2. Combinations and Permutations

In a lot of textbooks, particularly for Finite Mathematics, or Quantitative
Literacy, as well as a basic Probability & Statistics, a lot of time is spent
talking about combinations and permutations. For example, if I have 52
distinct cards in a deck of cards, I might ask how many 5-card hands I can
build with them.

If order doesn’t matter, such as in Poker, then I would have

52C5 =

(
52

5

)
=

52!

5! 47!
=

52× 51× 50× 49× 48

5× 4× 3× 2× 1
= 2, 598, 960

154 4. ADVANCED FEATURES OF SAGE

possibilities, and Sage calls this binomial(52, 5). This is an example of
the “combinations” formula.

However, if order does matter, which is not the case for poker, then I
would have

52P5 =

(
52

5

)
5! =

52!

47!
= 52× 51× 50× 49× 48 = 311, 875, 200

possibilities. In Sage, you can type

factorial(52)/factorial(52-5)

for that, or you can type

binomial(52,5)*factorial(5)

both of which return the same answer. This is an example of the “permu-
tations” formula.

You might be wondering why Sage does not have a command for per-
mutations, when it does have a command for combinations. Well, there is a
command for permutations, but it does something a bit more than the above.
In the above work, we calculated how many permutations, but sometimes
you might want to know what those permutations are.

For this you can type

S= Permutations([’ace’, ’king’, ’queen’, ’jack’])

print "We expect ", len(S.list()), " items below."

S.list()

and it will obediently display all 24 possibilities:

We expect 24 items below.

[[’ace’, ’king’, ’queen’, ’jack’],

[’ace’, ’king’, ’jack’, ’queen’],

[’ace’, ’queen’, ’king’, ’jack’],

[’ace’, ’queen’, ’jack’, ’king’],

[’ace’, ’jack’, ’king’, ’queen’],

[’ace’, ’jack’, ’queen’, ’king’],

[’king’, ’ace’, ’queen’, ’jack’],

[’king’, ’ace’, ’jack’, ’queen’],

[’king’, ’queen’, ’ace’, ’jack’],

[’king’, ’queen’, ’jack’, ’ace’],

[’king’, ’jack’, ’ace’, ’queen’],

[’king’, ’jack’, ’queen’, ’ace’],

[’queen’, ’ace’, ’king’, ’jack’],

[’queen’, ’ace’, ’jack’, ’king’],

[’queen’, ’king’, ’ace’, ’jack’],

[’queen’, ’king’, ’jack’, ’ace’],

[’queen’, ’jack’, ’ace’, ’king’],

[’queen’, ’jack’, ’king’, ’ace’],

[’jack’, ’ace’, ’king’, ’queen’],

4.7. SOME MINOR COMMANDS OF SAGE 155

Mathematician’s Words Sage functions
Hyperbolic Sine sinh(x)

Hyperbolic Cosine cosh(x)

Hyperbolic Tangent tanh(x)

Hyperbolic Cotangent coth(x)

Hyperbolic Secant sech(x)

Hyperbolic Cosecant csch(x)

Inverse Hyperbolic Sine arcsinh(x) or asinh(x)

Inverse Hyperbolic Cosine arccosh(x) or acosh(x)

Inverse Hyperbolic Tangent arctanh(x) or atanh(x)

Inverse Hyperbolic Cotangent arccoth(x) or acoth(x)

Inverse Hyperbolic Secant arcsech(x) or asech(x)

Inverse Hyperbolic Cosecant arccsch(x) or acsch(x)

Table 2. The Hyperbolic Trigonometric Functions and
Their Inverses

[’jack’, ’ace’, ’queen’, ’king’],

[’jack’, ’king’, ’ace’, ’queen’],

[’jack’, ’king’, ’queen’, ’ace’],

[’jack’, ’queen’, ’ace’, ’king’],

[’jack’, ’queen’, ’king’, ’ace’]]

Try instead

S= Permutations([’ace’, ’king’, ’queen’, ’jack’, ’ten’, ’nine’])

print "We expect ", len(S.list()), " items below."

S.list()

if you are curious.
Actually, this is one of many uses of the “Permutations” infrastructure

in Sage, but we cannot go into the others here, as it is a very advanced topic.

4.7.3. The Hyperbolic Trigonometric Functions

If you’ve learned the hyperbolic trigonometric functions, then that’s great.
Personally, I have never had them taught to me in a course (and I have a
PhD), but I do know that they come in handy at times. They come up
in physics mostly in the study of the catenary curve, which is the shape
of a cable permitted to hang limp under its own weight, but attached at
each end. Also, there are some integrals which are much more compact
in their solution if you know about the hyperbolic functions. So don’t feel
bad if you’ve never seen them. These are the commands for all 12 of those
functions, and they are given in Table 2.

156 4. ADVANCED FEATURES OF SAGE

4.8. Calculating Limits Expressly

If you wanted to calculate

lim
x→0

x− 2

x− 3

you should type

limit((x-2)/(x-3), x=0)

to learn that the answer is 2/3, which is perhaps obvious. Perhaps less
obvious would be the limit

lim
x→1

x2 − 4x+ 3

x2 − 3x+ 2

for which you should type

limit((x^2-4*x+3)/(x^2-3*x+2), x=1)

to obtain the answer “2.” If you do not know how to do that without a
computer or calculator (in other words, only with pen and pencil), then let
me suggest that you try factoring those two polynomials as a first step.

Last but not least, if you wanted to verify the strange and amazing fact

lim
x→0

(cosx)1/x
2

=
1√
e

then you should type

limit(cos(x)^(1/x^2), x=0)

to obtain the desired (but very surprising) answer

e^(-1/2)

To show that the last limit there, given in terms of cosine and x2 is true,
you could try values like x = 0.001 on any scientific calculator, or with Sage.
But to prove the limit true is rather difficult. It requires two applications of
L’Hôpital’s Rule or a Taylor Series (but not both), so far as I am aware.

Infinite Limits:

Sometimes limits go to infinity. For example,

lim
x→0+

1

x2
= lim

x→0−

1

x2
= lim

x→0

1

x2
=∞

is the classic example in most calculus textbooks. However, if we were to
put 1/x3 in place of 1/x2 in those limits, then we’d have a problem.

If we approach 0 from the positive numbers, the limit for 1/x3 would
be +∞, but if we approach 0 from the negative numbers, the limit for 1/x3

would be −∞. Therefore, the limit does not exist if we approach 0 in general.
To see how Sage handles this, consider the following code:

4.9. SCATTER PLOTS IN SAGE 157

print limit(1/x^2, x=0)

print limit(1/x^3, x=0)

print limit(1/x^4, x=0)

print limit(-1/x^4, x=0)

That code generates this output:

+Infinity

Infinity

+Infinity

-Infinity

As you can see, Sage will faithfully report +Infinity when the limit
goes to +∞, and it will faithfully report -Infinity when the limit goes to
−∞. The unsigned infinity is a bit surprising. We can further clarify by
typing

print limit(1/x^3, x=0, dir=’right’)

print limit(1/x^3, x=0, dir=’left’)

print limit(1/x^3, x=0)

That code produces the following output:

+Infinity

-Infinity

Infinity

Essentially, Sage will report Infinity as the limit for f(x) whenever

lim
x→0
|f(x)| = +∞

provided that the conditions for reporting +Infinity or -Infinity are not
also satisfied. Many calculus professors might be upset with this convention,
however. Traditionally, the limit as 1/x3 goes to zero should be “d.n.e.,”
which is an abbreviation for “does not exist.”

By the way dir = ’right’ can be also described as dir = ’+’ and dir

= ’plus’. Similarly, dir = ’left’ can be also described as dir = ’-’ and
dir = ’minus’. Different minds find one or another naming scheme to be
more or less intuitive. However, it is very important to remember that the
limit approaching from the negative side and the limit approaching from the
positive side are (at times) not equal. This is a common trap on calculus
exams.

4.9. Scatter Plots in Sage

Let’s suppose you’re examining some data given by the points

{(0, 7.1); (1, 5.2); (2, 2.9); (3, 1.05); (4,−0.9)}

First, you should tell Sage about the data using the following command,
which is another example of how lists are written in Sage:

datapoints = [(0, 7.1), (1, 5.2), (2, 2.9), (3, 1.05), (4, -0.9)]

158 4. ADVANCED FEATURES OF SAGE

Notice how the data, namely those five points, are separated by commas
and enclosed by brackets? This is an example of a list in Sage. You can
enclose any data with [and], and separate the entries with commas, to
make a list. This is notation that Sage inherited from the computer language
called Python.

Now we can easily make a scatter plot, by just typing

scatter_plot(datapoints)

which will produce for us the scatter plot shown below on the left. However,
it is important that the list with the data points remain inside of the Sage
Cell server on your screen. So throughout this section and the next, you’ll
need that list of data points to be inside the box where you normally type
commands.

Without Best-fit Line With Best-fit Line

Perhaps you have the custom of computing “best fit lines” in a spread-
sheet tool, or in a statistical package. If so, that’s great. If not, then
Sage will be very able to do this for you. We’ll explain how to do that
in the next section. Meanwhile, the actual best fit line for this example is
y = 7.1−2.015x, and the scatter plot on the right includes this line. As you
can see, it is a rather good fit, but an imperfect fit. That plot with the line
included was created by typing

scatter_plot(datapoints) + plot(7.1-2.015*x, 0, 4)

By the way, if you’re curious how Sage came up with 7.1 and 2.015,
that is discussed on Page 4.16.4. Now let’s consider another data set. This
example will explain to you why we are bothering to make a plot at all,
when there are so many tools out there, including Sage, to give us the line
of best fit whenever we want one. First, enter the data

otherdata = [(-3, 10), (-2, 5), (-1, 2), (0, 1), (1, 2),

(2, 5), (3, 10)]

and note that cut and paste usually works rather well if you don’t want
to retype the above list. Imagine that this is some data from a scientific
experiment, and that you lab partner has copied the data and has found
the line of best fit, y = 0x + 5 using some sort of statistics package, but

4.9. SCATTER PLOTS IN SAGE 159

has not created a scatter plot. You, of course, are mindful of scientific best
practices, and therefore you type

scatter_plot(otherdata)

to obtain the plot below on the left. Then you can add in the line of best
fit, and you get the plot on the right in Figure 4.9.

Without Best-fit Line With Best-fit Line

As you can see, this is absurd. The data is clearly an ordinary parabola.
Therefore, a line is a terrible approximation for this data. However, of all the
lines that could ever be drawn, even though all of them have unacceptably
high error, there is one line that has the least error. It turns out that this
line of least (squared) error, for this data set, is y = 0x + 5. Furthermore,
it is manifestly clear that this line is a horrible fit, as shown in the plot on
the right. It is for this reason that always plotting the scatter plot with the
best fit line is considered to be a “standard operating procedure” in most
labs. By the way, the previous plot was produced by the command:

scatter_plot(otherdata) + plot(0*x+5, -3, 3)

Now is a good time to explain that the object which scientists call “the
best fit line” is actually better known among mathematicians as a “linear
regression.” By linear regression, we mean analyzing a set of data to find
the line that best fits the data. Here, we should have done a “quadratic
regression” which would find the parabola which best fits the data. In a few
pages, we’ll see how to do that.

A Chemistry Example:

Perhaps you might think that the parabola example is quite artificial. You’re
right, I did think it up just to prove a point. However, the following data
shows how a 2 kilogram sample of Cobalt-62 might decay. Here the x-
coordinate is time in minutes, and the y-coordinate is weight in grams.

cobalt_data=[(0, 2000), (0.75, 1414), (1.5, 1000), (2.25, 707),

(3.00, 500), (3.75, 353), (4.50, 250), (5.25, 177),

(6.00, 125)]

We can type scatter plot(cobalt data) and get the scatter plot:

160 4. ADVANCED FEATURES OF SAGE

Linear Regression Exponential Regression

Figure 2. Two Plots of the Cobalt Data Set

An unwise student might be tempted to do a linear regression, especially
if the last few lab reports required linear regressions. The linear regression
of this data happens to be y = −290.333x+ 1596.11. In that case, one gets
the plot shown in Figure 4.9 on the left. However, a wiser student should
remember that radioactive decay follows an exponential curve. Instead of
asking for y = ax+b, which is a line, the wise student would ask for y = aebx,
which is an exponential. This is part of the beauty of Sage’s regression tools,
namely that a linear regression is just as easy as a quadratic regression,
an exponential regression, a cubic regression or a logarithmic regression.
We’ll see how to do those regressions in the next section. Meanwhile, the
exponential regression happens to be y = 1999.96e−0.462162x, and you get
the curve shown below on the right.

The moral of the story is that while it is great to calculate regressions
of data, you should not just assume that a linear regression is what you
want. Dividing the world of functions into linear and non-linear functions
is like dividing the set of living things on the earth into armadillos and

4.10. MAKING YOUR OWN REGRESSIONS IN SAGE 161

non-armadillos. Most functions are not linear, and therefore you should not
assume that your data is best served by a linear model.

4.10. Making Your Own Regressions in Sage

This lesson assumes that you’ve read the previous section on scatter plots.
In particular, we’ll be using the cobalt data from the previous lesson. For
the next few pages, you’ll want that data as the first line of your Sage Cell
window. If you are in Sage Cloud, this data just needs to be on the page
and above the commands we are typing here.

First, we’re going to try to fit a linear regression to that data. This
means that we’re going to ask Sage to give us a function y = ax + b that
models, as best as possible, these 9 points. The commands for that are

var("a b")

model(x) = a*x + b

find_fit(cobalt_data, model)

where the var command is one we’ve seen before (see Page 38), but the next
two commands are new to us. The reply we get is

[a == -290.33333269040816, b == 1596.1111098318909]

which is Sage’s way of telling us that the linear regression is

y = −290.333x+ 1596.11

Now we can plot that with

scatter_plot(cobalt_data) + plot(-290.333*x+1596.11, 0,6)

Let’s look at the plot, which is the left of the pair of images in Figure 4.9.
As you can see, this is not a very good fit at all. Of course, basic chemistry
tells us that radio-active decay follows an exponential curve. To do an
exponential regression we type

var("a b")

model(x) = a*exp(b*x)

find_fit(cobalt_data, model)

and as you can see, only the middle line of those three lines has changed.
We have changed the model from y = ax + b into y = aebx. Now Sage’s
response to these commands is

[a == 1999.9607020042693, b == -0.46216218069391302]

which is Sage’s way of telling us that the model is

y = 1999.96e−0.462162x

and you can immediately see that there’s some rounding error. That leading
coefficient of 1999.96 really should be 2000, as we started with 2000 grams.
However, that’s part of the pros and cons of numerical methods. You can do
almost anything with numerical methods, but you very rarely can be exact.
In any case, we can see the quality of this regression by the command

162 4. ADVANCED FEATURES OF SAGE

scatter_plot(cobalt_data) + plot(1999.96*exp(-0.462162*x), 0, 6)

The plot obtained is the image on the right in Figure 4.9. Last but not
least, one might consider a quadratic regression. That’s a regression of the
form y = ax2 + bx+ c, and the command for that would be

var("a b c")

model(x) = a*x^2 + b*x + c

find_fit(cobalt_data, model)

where you can see that the only real change is the middle of the three lines
again, but also we had to declare c as a variable, which we did in the var

command. In any case, the response from Sage is

[a == 62.755170737557854, b == -666.86435772164759,

c == 1925.5757574133333]

and that is Sage’s way of telling us that the model is

y = 62.7551x2 − 666.864x+ 1925.57

Next, we can draw that model with

scatter_plot(cobalt_data) + plot(62.7551*x^2-666.864*x+1925.57,0,6)

which produces the image

While that’s clearly not a very bad fit, it is unwise to model radioactive
decay with a quadratic function. This is not only because many of the data
points were “missed.” The issue can be most easily seen by allowing time
to have the range 0 to 15, instead of 0 to 6. Just change the 6 into a 15 at
the end of the last line we just typed.

We get the following image

4.12. CAN SAGE DO SUDOKU? 163

which is clearly not a good model of radioactive decay.

4.11. Computing in Octal? Binary? and Hexadecimal?

To find out the decimal values of hexadecimal 71, type 0x71 and get 113.
Note that this is because 7× 16 + 1 = 113. By the way, that’s a zero before
the x not the letter “o.” Alternatively, for hexadecimal 0x1F you would type
0x1F, and get 31, because 1× 16 + 15 = 31.

The octal system is considerably more rare, but it does come up from
time to time. For octal 11, type 011. The response is 9 because 1×8+1 = 9.

Binary is similar to hexadecimal, except with a b in place of the x. Thus
to find out what binary 1101 is, you would type 0b1101, and learn that the
answer is 13. That’s because

(1× 23) + (1× 22) + (0× 21) + (1× 20) = 8 + 4 + 0 + 1 = 13

To go in reverse, you can type hex(31) and you’ll get 1F. Likewise, for
binary you can type bin(63) and you’ll get the binary expansion for 63,
which is 11111 (or five ones, consecutively). The octal-in-reverse is a bit
messy. Type oct(int(31)) to learn that the answer is 37, because

37octal = 3× 8 + 7 = 24 + 7 = 31

4.12. Can Sage do Sudoku?

To solve the 9×9 Sudoku puzzle defined by a 9×9 matrix, enter the matrix:

A = matrix(9, 9, [5,0,0, 0,8,0, 0,4,9, 0,0,0, 5,0,0, 0,3,0,

0,6,7, 3,0,0, 0,0,1, 1,5,0, 0,0,0, 0,0,0, 0,0,0, 2,0,8,

0,0,0, 0,0,0, 0,0,0, 0,1,8, 7,0,0, 0,0,4, 1,5,0, 0,3,0,

0,0,2, 0,0,0, 4,9,0, 0,5,0, 0,0,3])

Then if you type print A on a line by itself, you get

164 4. ADVANCED FEATURES OF SAGE

[5 0 0 0 8 0 0 4 9]

[0 0 0 5 0 0 0 3 0]

[0 6 7 3 0 0 0 0 1]

[1 5 0 0 0 0 0 0 0]

[0 0 0 2 0 8 0 0 0]

[0 0 0 0 0 0 0 1 8]

[7 0 0 0 0 4 1 5 0]

[0 3 0 0 0 2 0 0 0]

[4 9 0 0 5 0 0 0 3]

which has some non-zero entries, but mostly contains zeros to mark where
the blanks would go in an ordinary Sudoku game. Now you can solve the
game by typing

sudoku(A)

and obtain

[5 1 3 6 8 7 2 4 9]

[8 4 9 5 2 1 6 3 7]

[2 6 7 3 4 9 5 8 1]

[1 5 8 4 6 3 9 7 2]

[9 7 4 2 1 8 3 6 5]

[3 2 6 7 9 5 4 1 8]

[7 8 2 9 3 4 1 5 6]

[6 3 5 1 7 2 8 9 4]

[4 9 1 8 5 6 7 2 3]

which is a valid Sudoku solution. However, there might be other solutions.

4.13. Measuring the Speed of Sage

Factoring large numbers, for example, is supposed to be hard and you might
want to know how long it takes Sage to execute the command

factor(2250000063000000041)

In which case you should type

timeit("factor(2250000063000000041)")

and for me, on my machine, it says
625 loops, best of 3: 91.8 µs per loop

which means it tried 625 times, and the best estimate for the running time
is 91.8 microseconds, or about 1/10,893 seconds.

Of course, the response time when you operate with Sage is much longer
than that. What’s going on? Most of the time using Sage is wasted with
the commands traveling over the internet to the server, and traveling back.
Also, some time is wasted displaying the data. In this case, you probably
lose about 2 seconds on transit time, 1/4th of a second on display and the
interface, and nearly 0 seconds on computation.

4.14. HUGE NUMBERS AND SAGE 165

However, for certain very hard problems, you can spend 10 minutes
on computation, and 2 seconds on transit time, and a 1/4th of a second
on display and the interface. So this feature of Sage is there to help you
measure that.

4.14. Huge Numbers and Sage

Sometimes when studying combinatorics, one has to deal with numbers that
are huge. For example, asking Sage for factorial(52) will result in

80658175170943878571660636856403766975289505440883277824000000000000

but it is hard for me to grasp what that means. However, I can type

floor(log(factorial(52), 10))+1

which will give me 68. That means that the number is a 68-digit number,
for reasons we will now explain.

Why does this work? Because log10 107 = 7 and log10 108 = 8. Accord-
ingly, any number x such that 107 ≤ x < 108 has therefore 7 ≤ log10 x < 8.
However, what numbers have 107 ≤ x < 108? Precisely the eight-digit num-
bers of course! Therefore, the set of 8-digit numbers is precisely the set of
numbers with 7 ≤ log10 x < 8. By taking the floor with floor, we round
down, and thus every 8-digit number has the floor of its common logarithm
being precisely 7. We correct for this with a +1.

Typing factorial(factorial(7)), to compute (7!)! is also amusing.
You get a very large number if you do this. In fact, using the above tech-
nique, I can learn that (7!)! has 16,474 digits. You’ll also see that this very
large number is displayed as dozens of lines each ending in a backslash. The
backslashes are Sage’s way of saying that it really sees several lines as one
large line, but that the very large line of digits wouldn’t fit on the screen.
Therefore, Sage has to break it, to fit it on your screen.

It is also fun to type

factor(factorial(factorial(7)))

I am impressed at how rapidly Sage can factor that 16,474-digit number.
And observe that every single prime number less than 5040 is present in the
factorization, though raised to various powers.

Fractions can be even more interesting. For example, if you type:

7200000*(21/20)^(2011-1867)

you get back
225850445271366506699872771636699629027730784143619404714135419872297991\

159890730122325475848713199097965808127266523705668417267736363165100450\

844089107959562425378283156323856617090505699529/27875931498163278926919\

6478408104518824755200\

00\

000000000000000

Notice that there’s a forward slash roughly 2/3rds of the way through
the middle line. So that five-line number is really a 2.67-line integer divided

166 4. ADVANCED FEATURES OF SAGE

by a 2.33-line integer. More precisely, it is a 192-digit number divided by a
182-digit number. I discovered those digit counts by using the technique of
taking the floor of the logarithm base 10, which we learned moments ago.
In any case, typing

N(7200000*(21/20)^(2011-1867))

gives me the decimal approximation

8.10198738242156e9

and that’s about 8.1 billion—something that I can wrap my head around,
even if but partially.

In case you were wondering what that came from, look at the dates,
and you’ll quickly realize exactly what it is (if you’ve studied American
History). In the year , the USA purchased Alaska from Russia for 7.2
million dollars. If that sum had instead been invested at 5% compounded
annually for the same period of time, it would be worth 8.1 billion dollars in
2011, when I first started this book. (Note that 21/20 = 1.05.) Of course,
that’s an extremely moderate interest rate, and it displays the power of
compound interest.

4.15. Using Sage and LATEX

Perhaps I want to solve the following quartic equation

x4 + x3 + x2 + x− 4 = 0

and I type the following code:

answers = solve(x^4 + x^3 + x^2 + x - 4, x)

print answers[0]

print answers[1]

print answers[2]

print answers[3]

Then I might see that answers[2] is the root that I am interested in.
However, how am I going to efficiently typeset

x == (5/9*sqrt(3)*sqrt(2) - 35/27)^(1/3) -

5/9/(5/9*sqrt(3)*sqrt(2) - 35/27)^(1/3) - 2/3

in LATEX for a conference paper or a journal article? Luckily, Sage will
do this for me. The following code:

answers = solve(x^4 + x^3 + x^2 + x - 4, x)

print answers[2]

latex(answers[2])

produces the following output

4.16. MATRICES IN SAGE, PART THREE 167

x == (5/9*sqrt(3)*sqrt(2) - 35/27)^(1/3) - 5/9/(5/9*sqrt(3)*sqrt(2)

- 35/27)^(1/3) - 2/3

x={\left(\frac{5}{9} \, \sqrt{3} \sqrt{2} - \frac{35}{27}\right)}^{

\frac{1}{3}} - \frac{5}{9 \, {\left(\frac{5}{9} \, \sqrt{3}

\sqrt{2} - \frac{35}{27}\right)}^{\frac{1}{3}}}-\frac{2}{3}

As you can see, the first line is written in Sage and the second line is
written in LATEX. It produces the following very nice, but still imperfect,
output.

x =

(
5

9

√
3
√

2− 35

27

) 1
3

− 5

9
(
5
9

√
3
√

2− 35
27

) 1
3

− 2

3

4.16. Matrices in Sage, Part Three

Large pieces of Sage use linear algebra to carry out their tasks, so it is
unsurprising that Sage has a huge suite of commands dedicated to linear
algebra. There is too much to go into here, but I have chosen three flagship
topics to round out our third section on linear algebra. They are eigenvec-
tor/eigenvalue problems, matrix factorizations and canonical forms, as well
as solving least-squares problems.

4.16.1. Introduction to Eigenvectors

A right-eigenvector ~v 6= ~0 of the matrix A is any vector such that there
is some real or complex number λ with A~v = λ~v. In other words, when I
multiply A~v, I get double ~v, or one-third ~v, or a million times ~v, or some
constant multiple of ~v. Let us take it as given that these vectors are very
important in certain scientific applications, and focus instead on finding
them. By the way, the term for the λ that appears in the definition is
“eigenvalue.”

If A is an n × n matrix, then let In be the n × n identity matrix. The
following formulations are equivalent:

A~v = λ~v

A~v − λ~v = ~0

A~v − λ(In~v) = ~0

(A− λ(In))~v = ~0

The last equation makes it clear that for any interesting (which is to
say, non-zero) vectors ~v to be found, the matrix (A−λIn) must be singular.
Of course, that means that the determinant of (A− λIn) is zero. We don’t
yet know what λ is, so let’s call it x. We are essentially constructing a
new matrix, where all the off-diagonal entries match those of A, but the
on-diagonal entries of A have “−x” attached to them. We can ask Sage to
take the determinant of that matrix, or compute the determinant by hand.

168 4. ADVANCED FEATURES OF SAGE

However, we know that if x is an eigenvalue, then that determinant is zero.
Let’s see a short example:

A =


0 0 0 −4
1 0 0 0
0 1 0 5
0 0 1 0

 becomes A− xIn =


0− x 0 0 −4

1 0− x 0 0
0 1 0− x 5
0 0 1 0− x


Next, it turns out the determinant is

det(A− xIn) = x4 − 5x2 + 4

which had me worried, because that’s a fourth-degree polynomial. However,
it is a biquadratic, so it factors easily

x4 − 5x2 + 4 = (x+ 2)(x+ 1)(x− 1)(x− 2)

By the way, that polynomial we just found is called the characteristic
polynomial of A. Now we know that the values of x that will be eigenvalues
are

x ∈ {−2,−1, 1, 2}
and we can proceed to go find them.

Just taking λ = 2 as an example, we have to solve

(A− λ(In))~v = (A− 2In)~v = ~0

but that’s just a standard linear algebra problem. We learned how to do that
on Page 137 using the backslash operator or the solve right command. We
have to do that for each of the 4 eigenvalues, but this is clearly not a difficult
problem.

There are other ways to find the eigenvectors. What was convenient
here is that the polynomial was easy to handle. Because of the fact that
polynomials of degree 5 and higher are not guaranteed to be solvable, our
previous technique (of factoring the characteristic polynomial) can be com-
putationally infeasible. Luckily, Sage handles this for us.

In Sage, the entire process above can be streamlined, as below:

A = matrix([[0,0,0,-4], [1,0,0,0], [0,1,0,5], [0,0,1,0]])

I = identity_matrix(4)

print "A:"

print A

print

print "I:"

print I

print

print (A-I*x)

print

print det(A-I*x)

print factor(det(A-I*x))

4.16. MATRICES IN SAGE, PART THREE 169

This produces the output

A:

[0 0 0 -4]

[1 0 0 0]

[0 1 0 5]

[0 0 1 0]

I:

[1 0 0 0]

[0 1 0 0]

[0 0 1 0]

[0 0 0 1]

[-x 0 0 -4]

[1 -x 0 0]

[0 1 -x 5]

[0 0 1 -x]

x^4 - 5*x^2 + 4

(x + 2)*(x + 1)*(x - 1)*(x - 2)

By the way, the characteristic polynomial of A has a fascinating rela-
tionship with A. If you type

print A^4 - 5*A^2 + 4

where we have taken the matrix A and treated it as if it were x, we get the
zero matrix back—that will always occur.

4.16.2. Finding Eigenvalues Efficiently in Sage

The process in the previous section was to give you an idea about what
finding an eigenvector or an eigenvalue actually means. The procedures
used can be interesting both in the mathematics that they leverage and in
the algorithmic computer science chosen to make the process run efficiently.
We cannot go into that here, but I recommend the book by Lloyd Trefethen
and David Bau, Numerical Linear Algebra, published by the Society for
Industrial and Applied Mathematics in 1997.

We can find the eigenvalues or eigenvectors directly, with the commands:

A.eigenvalues()

A.eigenvectors_left()

A.eigenvectors_right()

However, sometimes the characteristic polynomial is valuable in its own
right. To obtain it, we should use either of the following commands:

A.charpoly()

factor(A.charpoly())

170 4. ADVANCED FEATURES OF SAGE

To demonstrate the tradeoffs between these methods, we will investigate
the following matrix:

B =

[
1 2
3 4

]
Consider the following code:

B = matrix(2, 2, [1, 2, 3, 4])

print B.eigenvectors_right()

print

b(x) = B.charpoly()

print solve(b(x)==0, x)

That code produces the following output:

[(-0.3722813232690144?, [(1, -0.6861406616345072?)], 1),

(5.372281323269015?, [(1, 2.186140661634508?)], 1)]

[

x == -1/2*sqrt(33) + 5/2,

x == 1/2*sqrt(33) + 5/2

]

We see a sequence of items separated by commas and enclosed in brack-
ets, so we know that we have a list in the syntax of Sage and Python. Each
of the two items in the list is an ordered triple, consisting of the eigenvalue
λ, and the eigenvector ~v, followed by the multiplicity of the eigenvalue in
the matrix’s characteristic polynomial.

Below that is the output of solve where we explicitly found the roots
of the characteristic polynomial. Therefore, we obtain the exact, algebraic
form of the eigenvalues. This is more pleasing to me, because otherwise, we
don’t really know what the significance of the numerical values might be.
However, in many applications, the numerical values are all you need. Notice
how Sage reminds you that the eigenvalues are numerical approximations
in the eigenvectors command by use of the ? symbol after the least-
significant digit.

Earlier, I noted that if you “plug in” the matrix A in place of x inside its
characteristic polynomial then you get the zero matrix back. The charac-
teristic polynomial is usually, but not always, the lowest-degree polynomial
that achieves this phenomenon. However, if the characteristic polynomial
has repeated roots, there is another polynomial which is of lower degree, that
will also send A to the zero matrix. That is the “minimum polynomial” of
A, and it is found by the command A.minpoly().

4.16.3. Matrix Factorizations

There are many canonical forms and factorizations of matrices in the world
of mathematics. Sage has fourteen of them built in, that I could find. (There

4.16. MATRICES IN SAGE, PART THREE 171

might be more that I did not find.) If you have a particular application in
mind that often uses one particular decomposition, factorization, or canon-
ical form, then I hope that you will find it below.

A.as sum of permutations() A.LU()

A.cholesky() A.QR()

A.frobenius() A.rational form()

A.gram schmidt() A.smith form()

A.hessenberg form() A.symplectic form()

A.hermite form() A.weak popov form()

A.jordan form() A.zigzag form()

However, the most famous matrix factorization of all is the “LU-factor-
ization.” Usually, when someone speaks of the “LU-factorization” they mean
the LUP factorization, whereA = LUP , such that L is some lower-triangular
matrix, U is some upper-triangular matrix, and P is some permutation
matrix. That permutation matrix often, but not always, is the identity
matrix. This tends to make it “optional” in the sense that most A can be
written as A = LU without need of P 6= In. In Sage, however, A.LU() is
a PLU factorization. The permutation matrix is on the left, not the right,
which is unusual. You are forewarned!

This did cause me some embarrassment once, in the Spring semester of
2014, when I was teaching Numerical Analysis II, and my factorization of
A = PLU did not multiply back to the original A. That’s because I was
using A = LUP .

4.16.4. Solving Linear Systems Approximately with Least Squares

What were to happen if I were to want to solve a system of five equations
in two unknowns? It even sounds strange to the human ear—why are there
five equations if there are only two unknowns? Perhaps I want to solve the
following linear system of equations:

0m+ b = 7.1

1m+ b = 5.2

2m+ b = 2.9

3m+ b = 1.05

4m+ b = −0.9

Because those equations are linear, we know that I can make this into a
matrix problem: 

0 1
1 1
2 1
3 1
4 1


[
m
b

]
=


7.1
5.2
2.9
1.05
−0.9



172 4. ADVANCED FEATURES OF SAGE

Therefore, in Sage, I should type

A = matrix(5, 2, [0, 1, 1, 1, 2, 1, 3, 1, 4, 1])

print A

print

b = matrix(5, 1, [7.1, 5.2, 2.9, 1.05, -0.9])

print b

A \ b

Unsurprisingly, Sage responds that there is no solution. I have too many
constraints, and not enough variables that I can change to be able to satisfy
all five equations simultaneously. What, then, should I do?

What if an approximate solution were to be “okay?” It turns out that I
can get an approximate solution as follows:

A~x = ~b becomes instead ATA~x = AT~b

where AT is the transpose of A. Note that while A was a 5×2 matrix, since

AT is a 2× 5 matrix, we have that ATA is a 2× 2 matrix. Likewise, AT~b is
a 2-dimensional vector. If you are unfamiliar with the transpose operation,
note that it is just interchanging the rows and the columns of the matrix.
This means that the old rows are the new columns, and the old columns are
the new rows. In our case, this means that

AT =

[
0 1 2 3 4
1 1 1 1 1

]
Therefore, I type into Sage the following code:

A = matrix(5, 2, [0, 1, 1, 1, 2, 1, 3, 1, 4, 1])

print A

print

b = matrix(5, 1, [7.1, 5.2, 2.9, 1.05, -0.9])

print b

print

M = A.transpose() * A

d = A.transpose() * b

M \ d

The output indicates that I have m = −403/200 or m = −2.015 and b =
71/10 = 7.1 as my solution. Do these numbers look familiar? It turns out
that this is precisely and exactly the linear regression problem that we had
on Page 157. Whenever you are computing a linear regression (i.e., a best-fit
line) on n data points, then you are solving n linear equations in 2 unknowns,
using this funky method, called “Least Squares.” The method was invented

4.17. COMPUTING TAYLOR OR MACLAURIN POLYNOMIALS 173

by Carl Friedrich Gauss (–), or by Adrien-Marie Legendre (–
), depending on which history of mathematics book you consult.

If we think of the data points as

(x1, y1), (x2, y2), . . . , (x5, y5)

then we could define the error in the ith datapoint as

ei = yi − ŷi = yi −mxi − b
where ŷi = mxi + b is the estimated value of yi, predicted by the best-fit
line. This least squares procedure guarantees three amazing results:

• The sum of the eis is zero.
• The length of ~ei, or equivalently, the sum: e21 + e22 + · · · + e2n is as

small as possible. Note that ||~ei||2 is equal to that sum.
• The point (x, y) is guaranteed to be on the line y = mx+ b. Here
x is the average value of the xis, and y is the average value of the
yis.

Last but not least, the entries of ATA and AT b have meaning. They are

ATA =

[
30 10
10 5

]
as well as AT~b =

[
10.55
15.35

]
As you can see, the 30 is the sum of the squares of the xis. The two 10s

are the sums of the xis. The 5 is the number of data points. The 15.35 is
the sum of the yis. Last but not least, the 10.55 is the sum:

x1y1 + x2y2 + · · ·+ x5y5

It should be noted that there are many times when converting A~x = ~b

into ATA~x = AT~b makes sense. Computing linear regressions is just one
application. The smaller system of linear equations produced by this trick
is referred to as “the normal equations.”

4.17. Computing Taylor or MacLaurin Polynomials

Taylor polynomials make excellent approximations to functions, and natu-
rally they come up in many applications of calculus to the sciences—most
especially in physics. Unfortunately, computing a Taylor polynomial by
hand can be a major undertaking. Often one has to compute 8 terms in
order to get a mere 4 non-zero terms. This, in turn, requires taking a 7th
derivative. Luckily, Sage can do this for you.

First, it is worthwhile to remind ourselves what the definition of a Taylor
polynomial is. Recall that a line `(x) = mx + b is said to be the tangent
line of some function f(x) at the point x = x0 if the tangent line “touches”
f(x) at x0, and has “the same slope as” f(x) at x0. In precise terms, that
means the line has f ′(x0) as its slope, and f(x0) = `(x0). We could define a
parabola p(x) to be the tangent parabola at x0 similarly. It would have to
have p(x0) = f(x0), and p′(x0) = f ′(x0), as well as p′′(x0) = f ′′(x0).

174 4. ADVANCED FEATURES OF SAGE

Taylor Polynomial about x = 0 Taylor Polynomial about x = π

Figure 3. Two Examples of Taylor Polynomials of f(x) = cosx.

Analogous to the tangent line and tangent parabola, the nth degree
Taylor polynomial of f(x) at x0 is the unique nth degree polynomial p(x)
such that p(x0) = f(x0), and p′(x0) = f ′(x0), as well as p′′(x0) = f ′′(x0),
and so forth, until the nth derivative. The definition does not restrict the
n+1th or higher derivatives—they can be different, or they can be the same.

Oddly, some math faculty insist that if x0 = 0, that the polynomial be
called a MacLaurin polynomial, whereas if x0 6= 0, it is to be called a Taylor
polynomial. This rule is extremely strange. The mathematicians involved
are Brook Taylor (–) and Colin Maclaurin (–), as well as
James Gregory (–). Sadly, each had an unusually short life, even
by the standards of the their own times.

4.17.1. Examples of Taylor Polynomials

First, we will compute the 5th degree taylor polynomial of f(x) = cosx at
the point x = 0. The code below also will plot the cosine function (as a
dotted curve), and the Taylor polynomial (as a solid curve).

f(x) = cos(x)

p(x) = taylor(f(x), x, 0, 5)

print "Polynomial:"

print p(x)

P1= plot(p(x), -3*pi, 3*pi, ymax=3, ymin=-3)

P2= plot(f(x), -3*pi, 3*pi, linestyle=’--’)

show(P1 + P2)

The output produced is the polynomial itself:

1/24*x^4 - 1/2*x^2 + 1

as well as the plot given on the left in Figure 3.

4.17. COMPUTING TAYLOR OR MACLAURIN POLYNOMIALS 175

Meanwhile, we can change the 0 in the second line of our code to be pi.
Then we get the 5th degree Taylor polynomial of f(x) at the point x = π.
That’s the plot above, on the right.

In summary, the taylor command expects four inputs: first, the func-
tion; second, the variable; third, the point about which the approximation
is being made; fourth, the degree of the approximation required. Here, we
asked for the 5th degree and got the 4th degree. That’s because the fifth-
degree coefficient turns out to be zero. Since we don’t normally write 0x5,
that fifth-degree term is missing entirely.

By the way, as this is a four-parameter function, it happens that I almost
always get confused on the order of the four parameters. “Real program-
mers” always check the documentation. No one actually remembers fine
details like the particular order of the inputs. Even if you are confident that
you remember which is which, it is better to check anyway (using the tech-
niques of Section 1.10 on Page 47) to avoid the possibility of being mistaken.

4.17.2. An Application: Understanding How g Changes

In Physics I, when we work with problems that take place on Earth (and
near its surface) we just set g = 9.82 m/s2 and then we can compute the
force of gravity (i.e. the weight) of any mass via w = mg, or w = −mg,
depending on what sign conventions you prefer. When we work on prob-
lems involving satellites, nontrivially far from the earth’s surface, we learn
Newton’s formula for the force of gravity:

F =
Gmems

r2

where G is the universal constant of gravitation, me is the mass of the earth,
ms is the mass of the object (usually a satellite), and r is the distance from
the object to the center of the earth.

That’s all rather excellent—but what do we do for distances that are
in between? If we are 1 meter above the earth’s surface, then we know to
use g = 9.82 m/s2. If we are 106 meters above, then for sure, we should
use Newton’s formula. However, it would be nice to know how far off we
are if we use g = 9.82 m/s2 in a problem, for example, about a jet-liner, or
about Mount Everest. We will know explore this issue by making a Taylor
polynomial representation of Newton’s formula. The sizes of the coefficients
will tell us much information.

176 4. ADVANCED FEATURES OF SAGE

If we set F = w = msg, then we are finding out what value “little g”
takes at this particular r value. See the following calculation:

F =
Gmems

r2

msg =
Gmems

r2

g =
Gme

r2

g =
Gme

(re + x)2

As you can see, the ms on the left cancels out the ms on the right. This
should not be surprising, because just as g = 9.82 m/s2 for all objects at
the earth’s surface, regardless of their mass, so should the local value of g
far from the earth’s surface not depend on ms. Last, you will see that we
substituted r = re + x at the last step. The re represents the radius of the
earth, and the x is the distance from the earth’s surface to the object—
normally called the object’s altitude. The reason that we do this is that it is
easy to measure the altitude of an object with an altimeter—but it is rather
difficult to slice the entire earth in half simply for the benefit of placing one
end of an enormous ruler at its center.

Now we will take this function

g(x) =
Gme

(re + x)2

and compute a Taylor polynomial at x = 0, which is the earth’s surface.
Should we use a first-degree polynomial? A second-degree? Maybe a third-
degree? At this point in the problem, it is not obvious. My strategy (from
my engineering days) is to make a high-degree approximation and then throw
out most of the coefficients. The magnitudes of the coefficients will tell me
which ones to throw out. Therefore, I’m going to ask Sage to produce a
sixth-degree approximation. The code is below:

G = 6.67384*10^(-11)

Me = 5.97219*10^24

re = 6.371*10^6

g(x) = G*Me/(re + x)^2

p(x) = taylor(g(x), x, 0, 6)

print "Polynomial:"

print p(x)

print "Just to Confirm:"

print g(0)

print p(0)

4.18. MINIMIZATIONS AND LAGRANGE MULTIPLIERS 177

That code produces the following output:

Polynomial:

(1.02788991701e-39)*x^6 - (5.61315999537e-33)*x^5 + (2.98012019421e-26)*x^4

- (1.51890766058e-19)*x^3 + (7.25772052919e-13)*x^2

- (3.08259583276e-06)*x + 9.81960902527

Just to Confirm:

9.81960902526829

9.81960902527

The lines “just to confirm” are there to remind us that at x = 0, we
are at the earth’s surface and we expect to use g = 9.82 m/s2. That seems
to match. As for the polynomial itself, the coefficients of the third, fourth,
fifth, and sixth degree terms are exceptionally small—and therefore we can
delete them. For most problems we could delete the quadratic coefficient
also, but if perhaps x = 2 × 106 m2 then x2 = 4 × 1012 m2, and thus the
coefficient of 7.25× 10−13 seems to be worth keeping in that case.

The constant coefficient is reassuring, reminding us that g = 9.82 m/s2

at the earth’s surface. Notice that the number 9.82 m/s2 does not appear
anywhere in our Sage program—it is not an input—it was computed math-
ematically. The linear coefficient is the most important one of all in this
case. Because it is −3.08259 × 10−6 we know that if x ≈ 1000 m, then we
have nothing to worry about. We can use 9.82 m/s2 with impunity. On
the other hand, if x ≈ 106 m, then 9.82 m/s2 is a very poor approximation.
Moreover, every time we go up 1 km from the earth’s surface, g is reduced
by −0.003 m/s2. This means that even at 104 m altitude, we might want to
consider using Newton’s formula instead of 9.82 m/s2.

4.18. Minimizations and Lagrange Multipliers

Finding the minimum or maximum of a single-variable function is a com-
mon task in Calculus I. For a multivariable function, the problem is a bit
harder. Sage has several time-saving commands built in for multivariable
optimization.

There are two categories: constrained and unconstrained optimization.

4.18.1. Unconstrained Optimization

Let us suppose that you must find the minima of the function

f(x, y, z) = 120(y − x2 + 1)2 + (2− x)2 + 110(z − y2)2 + 150(3− y)2

One option, perhaps the most classic, is to take the gradient, ∇f , and set
it equal to the zero vector. The vector equation ∇f = ~0 has three unknowns
and three equations, but it is nonlinear. Since the system is small, it might
be solvable using resultants but that’s a lot of advanced work.

Often, a numerical solution will suffice, but this requires an initial guess
or initial condition. Perhaps your initial guess is x = 0.1, y = 0.3, and
z = 0.4. Then you would type the following.

178 4. ADVANCED FEATURES OF SAGE

var(’y z’)

f(x, y, z)=120*(y-x^2+1)^2 + (2-x)^2 + 110*(z - y^2)^2 + 150*(3-y)^2

minimize(f, [0.1, 0.3, 0.4])

Then we receive the output

Optimization terminated successfully.

Current function value: 0.000000

Iterations: 14

Function evaluations: 22

Gradient evaluations: 22

(2.0000000019, 3.00000000582, 9.00000003228)

We can have high confidence that a good minimum is x = 2, y = 3, and
z = 9. As you can see, 14 iterations of gradient descent3 were performed.
However, we might be curious to see how much our answer depends on initial
conditions. Let’s try a bad guess, perhaps x = 10, y = 30, and z = 40. We
will get the same answer, but it will take 50 iterations instead.

In the case of a function with many local minima, it is not obvious which
minima will be found. The domain of the function is divided into “basins
of attraction.” Those are sets of points in the domain that all will converge
to the same local minimum. However, the basins themselves can be very
complicated, and in extreme cases, they can be fractal. The same is true for
maximizations.

Convex functions, however, have only one local minimum or one local
maximum, which is therefore also global. Moreover, they cannot have both
a global minimum and a global maximum, only one of those two. In single-
variable calculus, those are functions where either f ′′(x) is always positive (a
unique minimum), or f ′′(x) is always negative (a unique maximum). How-
ever, it isn’t too clear what the equivalent notion would be for multivariate
functions.

For a multivariate function such as f(x, y, z) to have a unique maximum
or minimum, it turns out that the Hessian matrix H, see Page 203, must
have either only positive eigenvalues (unique minimum), or only negative
eigenvalues (unique maximum). Some readers might not know about Hes-
sian matrices. For functions of only two variables, there is a really awesome
shortcut: f(x, y, z) has a unique minimum (or maximum) if(

∂2f

∂x∂x

)(
∂2f

∂y∂y

)
−
(
∂2f

∂x∂y

)2

> 0

but note that this is not an “if and only if” relationship.

3Gradient descent is one of my favorite algorithms in all of mathematics, but I do
not really have the space to describe it here. Suffice it to say that it was discovered by
Augustin-Louis Cauchy (–), who is better known for giving us the modern notion
of convergence and divergence of infinite series, and other results in Real Analysis.

4.18. MINIMIZATIONS AND LAGRANGE MULTIPLIERS 179

These “very well behaved” problems (that is to say, convex problems)
come up in mathematical economics relatively often. They have the nice
property that gradient descent will always succeed, and always converge to
the unique optimum point.

4.18.2. Constrained Optimization by Lagrange Multipliers

In general, if I have a function f(x1, x2, . . . , xn) and I want to minimize
it subject to the constraint function gi(x1, x2, . . . , xn) = 0 for several con-
straints g1, g2, . . . , gm, then I should define a new function

F(x1, x2, . . . , xn, λ1, λ2, . . . , λm) = f(~x)+λ1g1(~x)+λ2g2(~x)+ · · ·+λmgm(~x)

where the new variables, λ1, λ2, . . . , λm are called “Lagragne4 Multipliers.”
The unconstrained, genuine minimum of F will be the minimum of f

on the set of all points which satisfy all m constraints simultaneously—
assuming that set is not empty. We also need the technical assumption that
∇gi 6= ~0 for all points where gi(~x) = 0, for each of the gis. This technical
assumption tends to be true in application problems.

4.18.3. A Lagrange Multipliers Example in Sage

The following example is take from James Stewart’s Calculus, 6th edition,
where it is Example 4 from Section 15.8, “Lagrange Multipliers.” Find the
point on the sphere x2 + y2 + z2 = 4 that is closest to the point (3, 1,−1).
We could try to minimize

D =
√

(x− 3)2 + (y − 1)2 + (z + 1)2

but it makes more sense instead to minimize

D2 = (x− 3)2 + (y − 1)2 + (z + 1)2

which is legal because D is never negative. Because D is never negative, the
task of minimizing D and minimizing D2 are exactly the same act.

Thus we wish to minimize

f(x, y, z) = (x− 3)2 + (y − 1)2 + (z + 1)2

subject to

g(x, y, z) = x2 + y2 + z2 − 4 = 0

which means we must minimize instead

F(x, y, z, λ) = (x− 3)2 + (y − 1)2 + (z + 1)2 + λ(x2 + y2 + z2 − 4)

so naturally we should find ∇F and set it equal to ~0.

4Named for Joseph-Louis Lagrange (–).

180 4. ADVANCED FEATURES OF SAGE

We begin by finding the four partial derivatives

∂F/∂x = 2(x− 3) + λ(2)(x)

∂F/∂y = 2(y − 1) + λ(2)(y)

∂F/∂z = 2(z + 1) + λ(2)(z)

∂F/∂λ = x2 + y2 + z2 − 4

Resulting in four quadratic equations in four variables:

2(x− 3) + 2xλ = 0

2(y − 1) + 2yλ = 0

2(z + 1) + 2zλ = 0

x2 + y2 + z2 − 4 = 0

We are simultaneously disappointed (because the equations are qua-
dratic) and delighted (because the last equation clearly guarantees that any
solution is on the sphere in question). After much algebra, we get two
solutions

x =
6√
11
, y =

2√
11
, z =

−2√
11

as well as x =
−6√
11
, y =

−2√
11
, z =

2√
11

As you can see, the first solution is the point on the sphere closest to
(3, 1,−1) and the second solution is the point on the sphere farthest from
(3, 1,−1).

The Example in Sage

To do this in Sage, we’d have to compute F(x, y, z, λ) ourselves. We type

var("y z L")

F(x, y, z, L)=(x-3)^2 + (y-1)^2 + (z+1)^2 + L*(x^2 + y^2 + z^2 - 4)

minimize(F, [0,0,0,0])

The reply from Sage is below:

Warning:

Desired error not necessarily achieved due to precision loss.

Current function value: 10.480396

Iterations: 1

Function evaluations: 28

Gradient evaluations: 16

(1.9173321311, 0.639110710366, -0.639110710366, 1.27822142073)

This represents Sage failing. We have the warning, and also the “current
function value” should be zero. I tried many different initial conditions, over
and over. This was most frustrating. Rest assured that Sage’s minimize

command usually works better. However, because it happened to me, it can
happen to you, so I’m going to share what you should do to get around this
situation.

4.18. MINIMIZATIONS AND LAGRANGE MULTIPLIERS 181

When Sage’s Minimize Command Won’t Minimize

When a mathematician hopes to minimize a multivariate function, a very
common strategy is to compute the gradient, and set it equal to zero. There-
fore, let’s start by asking Sage to compute the gradient for us. The code
below does that

var("y z L")

F(x, y, z, L)=(x-3)^2 + (y-1)^2 + (z+1)^2 + L*(x^2 + y^2 + z^2 - 4)

derivative(F)

Sage responds with

(x, y, z, L) |-->(2*L*x + 2*x - 6, 2*L*y + 2*y - 2, 2*L*z + 2*z + 2,

x^2 + y^2 + z^2 - 4)

Using cut-and-paste, either in a different browser window running the
Sage Cell Server, or alternatively in Sage Cloud, we can assemble the fol-
lowing equations, and solve them with the solve command.

eqn1= 2*L*x + 2*x - 6 == 0

eqn2= 2*L*y + 2*y - 2 == 0

eqn3= 2*L*z + 2*z + 2 == 0

eqn4= x^2 + y^2 + z^2 - 4 == 0

solve([eqn1, eqn2, eqn3, eqn4], [x, y, z, L])

As you can see, Sage produces the exact minimum and maximum in this
case:

[[x == -6/11*sqrt(11), y == -2/11*sqrt(11), z == 2/11*sqrt(11),

L == -1/2*sqrt(11)-1], [x == 6/11*sqrt(11), y == 2/11*sqrt(11),

z == -2/11*sqrt(11), L == 1/2*sqrt(11)-1]]

Furthermore, this solution has the advantage of being exact, and not
being a mere numerical approximation. What is the moral of this story?
If symbolic methods will work, don’t bother with numerical methods. Nu-
merical methods are sensitive to initial conditions, prone to rounding error,
and often you have to carefully select parameters. Algebraic methods, when
possible, circumvent all these flaws. On the other hand, algebraic meth-
ods are often not applicable—such as when finding the roots of polynomial
equations of degree five and higher.

4.18.4. Some Applied Problems

There are numerous examples of Lagrange Multipliers, particularly in math-
ematical economics. I would first recommend Shapoor Vali’s Principles of
Mathematical Economics, published by Atlantis Press in 2013. In particular,
Lagrange Multipliers appear in Chapter 10.4.2, “Production Function, Least
Cost Combination of Resources, and Profit Maximizing Level of Output.”

I would also recommend Mathematics for Finance: An Introduction to
Financial Engineering, by Marek Capinski and Tomasz Zastawniak, pub-
lished in 2003 by Springer under the Springer Undergraduate Mathematics
Series. Sections 5.1, 5.2, and 5.3 introduce Markowitz’s Optimal Portfolio

182 4. ADVANCED FEATURES OF SAGE

Strategy, essentially choosing stocks which are contra-variant to diminish
investor risk. That strategy is basically one enormous Lagrange Multipliers
problem.

4.19. Infinite Sums and Series

Let’s start with a very simple sum:

−4+−1+2+5+8+11+14+17+20+23+26+29+32+35+· · ·+131+134+137

First, we identify that it is an arithmetic progression, because the dif-
ference between adjacent terms is exactly three in all cases. Further ex-
amination tells us that this progression can be thought of as 3k − 7 for
k ∈ {1, 2, 3, . . . , 48} or 3k − 4 for k ∈ {0, 2, 3, . . . , 47}. The former notation
makes more sense to me.

To represent this in Sage, we should type

var("k y")

sum(3*k-7, k, 1, 48)

and we get the correct answer, namely 3192.
We might want a more general formula for

1 + 2 + 3 + 4 + · · ·+ (n− 2) + (n− 1) + n =
k=n∑
k=1

k

in which case we should type

var("k m")

print sum(k, k, 1, m)

print factor(sum(k, k, 1, m))

We receive back the following response:

1/2*m^2 + 1/2*m

1/2*(m + 1)*m

One of the great open problems in mathematics is the Riemann5 Hy-
pothesis and it is related to the Riemann Zeta function. A sum of the form

1

1
+

1

24
+

1

34
+

1

44
+

1

54
+

1

64
+ · · · =

k=∞∑
k=1

1

k4
= ζ(4)

is an example of evaluating the Reimann Zeta function at s = 4. In general,

1

1
+

1

2s
+

1

3s
+

1

4s
+

1

5s
+

1

6s
+ · · · =

k=∞∑
k=1

1

ks
= ζ(s)

where s can be any complex number, except the negative integers. In Sage,
we can evaluate the s = 4 case with

5Named for Georg Friedrich Bernhard Riemann (–). He is the Riemann
for Riemann Geometry (the curvature of space), the Riemann Hypothesis, and he also
contributed a lot to the study of prime numbers.

4.19. INFINITE SUMS AND SERIES 183

sum(1/k^4, k, 1, oo)

We get the answer: π4/90. The two consecutive letters “o” are the Sage
symbol for infinity in this case, namely oo. If you squint and cross your eyes
slightly, the oo looks like ∞.

4.19.1. Verifying Summation Identities

If you’ve worked with combinations, you might know the following identities:(
n

0

)
+

(
n

1

)
+

(
n

2

)
+ · · ·+

(
n

n− 2

)
+

(
n

n− 1

)
+

(
n

n

)
= 2n(

n

0

)
−
(
n

1

)
+

(
n

2

)
−
(
n

3

)
+

(
n

4

)
−
(
n

5

)
+

(
n

6

)
− · · · ±

(
n

n

)
= 0

We can verify this with the following Sage code:

var("k m")

print sum(binomial(m,k), k, 0, m)

print sum((-1)^k*binomial(m,k), k, 0, m)

The response reveals that Sage knows these identities.

2^m

0

Another fun trick is that the sum of the first n cubes is equal to the
square of the sum of the first n integers. In other words:

13 + 23 + 33 + 43 + · · ·+ (n− 1)3 + n3 = (1 + 2 + 3 + 4 + · · ·+ n)2

At first, I tried to verify this with the following code

var("k m")

sum(k, k, 1, m)^2 - sum(k^3, k, 1, m)

yet I received back the following answer:

-1/4*m^4 - 1/2*m^3 + 1/4*(m^2 + m)^2 - 1/4*m^2

Then I tried the code below, and got back a more satisfying “0.”

var("k m")

f(m) = sum(k, k, 1, m)^2 - sum(k^3, k, 1, m)

f(m).expand()

4.19.2. The Geometric Series

If we wanted to study a particular geometric progression

25 + 20 + 16 +
64

5
+

256

25
+

1024

125
+

4096

625
+ · · ·

we would start by dividing each element by the one before it, to discover
that the common ratio is cr = 4/5. Perhaps we could consider the general

184 4. ADVANCED FEATURES OF SAGE

form of a geometric progression:

a+ a(cr) + a(cr)
2 + a(cr)

3 + a(cr)
4 + a(cr)

5 + · · ·+ a(cr)
m =

k=m∑
k=0

a(cr)
k

where a denotes the first element, and cr the “common ratio.”
We can compute this sum in Sage, using the code below:

var("a c_r k m")

sum(a*(c_r)^k, k, 0, m)

We get the formula below, which is correct.

(a*c_r^(m + 1) - a)/(c_r - 1)

For the infinite sum, we would just have k run from 0 to ∞ instead of
from 0 to m. However, Sage makes an objection when we type the following
code:

var("a c_r k m")

sum(a*(c_r)^k, k, 0, oo)

The answer we receive back is a huge error message, followed by:

ValueError: Computation failed since Maxima requested additional

constraints; using the ’assume’ command before summation *may* help

(example of legal syntax is ’assume(abs(c_r)-1>0)’, see ‘assume?‘

for more details)

Is abs(c_r)-1 positive, negative or zero?

The cr denotes the common ratio, and from Calculus II we know that
it should be the case that −1 < cr < 1. Therefore, we can easily make the
assumption that |cr| < 1. We insert the assumption line as the new, middle
line of our code:

var("a c_r k m")

assume(abs(c_r) < 1)

sum(a*(c_r)^k, k, 0, oo)

With this added line, answer we receive back is the conventional answer.

-a/(c_r - 1)

Here, we can see that Sage was very wise to force us to declare the
assumption that −1 < cr < 1, because the geometric progression will other-
wise6 diverge. By the way, the assume command comes up in integration,
also. See Page 60 and Page 200 for examples of that.

4.19.3. Using Sage to Guide a Summation Proof

Suppose you are asked to compute

j=∞∑
j=0

x2j+1

j!
= x+

x3

1!
+
x5

2!
+
x7

3!
+
x9

4!
+
x11

5!
+ · · ·

6With the notable but extremely silly exception of a = 0, where the series converges
to 0 regardless of the choice of cr.

4.19. INFINITE SUMS AND SERIES 185

and then give a proof of that. We will ignore “radius of convergence” issues
for now, which actually do not come up in this problem.

First, let’s ask Sage what that sum actually turns out to be, using the
following code:

var("j")

sum(x^(2*j+1)/factorial(j), j, 0, oo)

The response is

x*e^(x^2)

which will be our objective in our proof.
Let’s say that you are pretty sure that

ey = 1 +
y

1
+
y2

2!
+
y3

3!
+
y4

4!
+
y5

5!
+
y6

6!
+ · · ·

but not entirely sure. You can verify this with

var("k y")

sum(y^k/factorial(k), k, 0, oo)

As you can see, Sage has helped us twice: first to give us a target for
our proof, and second to help us confirm an important basic formula which
we might or might not have misremembered. The rest is pretty straight
forward, after we substitute y = x2 into the definition of ey. We have the
following “proof,” but of course a student would have to add some words to
this.

ey = 1 +
y

1
+
y2

2!
+
y3

3!
+
y4

4!
+
y5

5!
+
y6

6!
+ · · ·

ex
2

= 1 +
x2

1
+
x4

2!
+
x6

3!
+
x8

4!
+
x10

5!
+
x12

6!
+ · · ·

xex
2

= x+
x3

1
+
x5

2!
+
x7

3!
+
x9

4!
+
x11

5!
+
x13

6!
+ · · ·

xex
2

=

j=∞∑
j=0

x2j+1

j!

Philosophical Point

Of course, the point of all this is that Sage is to be a set of training wheels for
the student’s learning of this famously hard topic: infinite series. Sage can
help students get over the initial befuddlement and confusion when being
first exposed to this material. The goal is that, at least after a while, the
student should consult Sage less frequently, until the problems can be solved
without Sage’s help at all. Only then can a rigorous Calculus II exam be a
success.

186 4. ADVANCED FEATURES OF SAGE

4.20. Ultra-High Precision Arithmetic

Really, Sage is about exact computations, which means keeping fractions
as genuine ratios of integers, and not their decimal approximations—thus
rounding error is avoided. When floating point numbers are needed, e.g.
logp q where both p and q are distinct primes, then you get 53-bits of preci-
sion, or 15+ decimal places. That’s really enough for almost anything.

However, if you need more precision, Sage will deliver. Using MPFR
(Multiple Precision Floating-point Reals), designed in part by Prof. Paul
Zimmerman, you can go up to 10,000 bits of precision, which is roughly 3010
digits of precision. And MPFR comes with Sage, though it is a bit hard to
use, so we will leave it to the MPFR manual to explain how to use it.

http://mpfr.loria.fr/mpfr-current/mpfr.html

4.21. Systems of Inequalities and Linear Programming

An unbelievable diversity of problems can be solved with concept of lin-
ear programming. These include routing shipments, scheduling, ingredient
mixes for highly processed foods, portfolio balancing, inventory planning,
advertising allocations, and a horde of problems in manufacturing, not to
mention finding Nash Equilibria in zero-sum games.

We don’t have the space to go into all of those (in fact, good coverage
of that material often requires an entire book much larger than this one).
However, we will see how to use Sage to solve linear programs that are
presented in symbolic form.

4.21.1. A Simple Example

Here is a simple example:

Maximize 2x+ y

subject to :

1.5− 2x ≥ y

1− x ≥ y

1− x ≤ 2y

x ≥ 0

y ≥ 0

By the way, if you’re curious to see what that example looks like, it can
be found (without the objective function) on www.gregorybard.com as an
interactive applet. The title of the applet is “Finding the Feasible Region.”
In any case, to solve the linear program, we would type the following.

LP = MixedIntegerLinearProgram(maximization = True)

4.21. SYSTEMS OF INEQUALITIES AND LINEAR PROGRAMMING 187

x = LP.new_variable()

LP.add_constraint(1.5 - 2*x[1] >= x[2])

LP.add_constraint(1 - x[1] >= x[2])

LP.add_constraint(1 - x[1] <= 2*x[2])

LP.add_constraint(x[1] >= 0)

LP.add_constraint(x[2] >= 0)

LP.set_objective(5*x[1] + 4*x[2])

print LP.solve()

print LP.get_values(x)

We will now go line-by-line through that code.

(1) The first line is the least intuitive. The name LP gives a name to
this linear program, and it can be whatever name you’d like to give
it. The long word MixedIntegerLinearProgram must always ap-
pear, in that capitalization, without spaces. Then you will indicate
whether the problem is a maximization, as we’ve done in this case,
or alternatively you can indicate if the problem is a minimization
by saying = False.

(2) Then we declare our variable family x. This actually declares an
infinite set of variables, x[0], x[1], x[2], x[3], As you can
see in this example, we only need x[1] and x[2]. You can even use
indices non-consecutively. We could have used the indices x[420]

and x[88] instead of x[1] and x[2] had we reason to do so.
(3) After this come the problem’s constraints. As you can see, these

are fairly straight-forward. You must type >= for ≥ and <= for ≤.
Don’t forget to put an asterisk between the coefficients and the
variables.

(4) Next we have to provide the minor constraints—that the variables
x[1] and x[2] must never be negative.

(5) The line after that declares the objective function. Again, this is
straight-forward Sage notation.

(6) The print statement will output the optimal value (in this case,
the maximum value) of the objective function.

(7) The line after that might seem puzzling at first. This line will print
the values of the variables that achieve this optimum. It might
appear strange that a separate line, after LP.solve(), is required.
However, when we talk about “multiple variable names” below,
you’ll see why this is there.

The output of that code should be the following:

4.5

188 4. ADVANCED FEATURES OF SAGE

{1: 0.5, 2: 0.5}

However, if you try this example shortly after this book is published,
you might receive instead what is below.

4.5

{1: 0.5, 2: 0.5}

/home/sageserver/sage/ipython/IPython/core/interactiveshell.py:2883:

DeprecationWarning: The default behaviour of new_variable() will

soon change! It will return ’real’ variables instead of nonnegative

ones.

Please be explicit and call new_variable(nonnegative=True) instead.

See http://trac.sagemath.org/15521 for details.

exec(code_obj, self.user_global_ns, self.user_ns)

Sage is going through a change right now. It has to do with the non-
negativity of variables inside of linear programs. The code presented in this
section will work both before the change and after the change. It would be
tedious and confusing to describe the change here. However, this warning
is displayed “for a while” before the change, so that users are aware that a
change is coming.

4.21.2. Convenient Features in Practice

The following additional features can be found in Sage, relating to linear
programming.

• If you have 20 or 30 variables, then repeatedly having the line

LP.add_constraint(x[27] >= 0)

could be tedious to type. Instead, you can type

x = new_variable(nonnegative=True)

in place of the line x = new variable(). Then all indices of x will
be assumed to be greater than or equal to zero, with just one line
of code. You do not have to write a separate inequality for each x

variable.
• Interval constraints come up from time to time, and being able to

use them in Sage can reduce the number of constraints by half in
some cases. Some computer algebra systems require you to type
2 ≤ 3x4 + 7x8 ≤ 5 as two separate constraints: 2 ≤ 3x4 + 7x8 and
3x4 + 7x8 ≤ 5. However, in Sage you can do this in one line:

LP.add_constraint(2 <= 3*x[4] + 7*x[8] <= 5)

• Sometimes we wish to say 5x1+6x2 = 300. Some computer algebra
systems require you to do this with two constraints: 5x1+6x2 ≤ 300
and 5x1 + 6x2 ≥ 300. However, in Sage, this can be done in one
line:

LP.add_constraint(5*x[1] + 6*x[2] == 300)

Note, that is two consecutive equal signs.

4.21. SYSTEMS OF INEQUALITIES AND LINEAR PROGRAMMING 189

• There are some applications where it is enough to find a feasible
solution, and there is no objective function. The following trick
probably only matters in really huge linear programs, where the
running time might be extremely long. Rather than setting the
objective function to 0, to have a faster program, one should type

LP.set_objective(None)

• If you type LP.show() then you get a human-readable summary of
the linear program. This can be really useful for debugging.
• You can add and remove linear constraints as you go, before or

after the solve command. There are certain cases where adding a
constraint, solving again, adding a constraint, solving again, and so
forth are very useful strategies. Each LP.solve() command knows
about the constraints that are above it in the program (except
those that have been removed), but not those that are given below
it. These situations come up in “Goal Programming” and in the
method of “Gomery Cuts.”
• To remove a constraint you just type

p.remove_constraint(17)

where 17 is the number of the constraint in the list shown when
you type LP.show(). Remember, computer scientists count from
0, so the first constraint show is #0, followed by #1, and then #2.
Accordingly, #17 is the 18th constraint shown.
• Imagine that I’m working on a shipping program with 10 factories

and 300 dealerships. It might be nice for me to be able to denote
the number of items from factory i sent to dealership j with sij . In
Sage, this can be done. All you have to do is type

s = new_variable(nonnegative=True, dim = 2)

and then you can use variables such as s[2][3], or s[1][5] and
so forth. Note that s[5][7] is not the same thing as s[7][5].
Naturally, you can also leave out the nonnegative=True if you wish
to have negative quantities shipped from factories to dealerships.
• Sometimes having all the variables merely be named x is uninfor-

mative and hampers an efficient comprehension of the problem. For
example, in the project described in Section 2.3 on Page 71, I had
typed:

d = myprogram.new_variable()

t = myprogram.new_variable()

g = myprogram.new_variable()

m = myprogram.new_variable()

This was done so that I could carry out the following vari-
able plan. Let d1, d2, . . . , d7 be the amount shipped out of Du-
luth/Superior. Let t1, t2, . . . , t7 be the amount shipped out of Two
Harbors. Let g1, g2, . . . , g7 be the amount shipped out of Green

190 4. ADVANCED FEATURES OF SAGE

Bay. Let m1,m2, . . . ,m7 be the amount shipped out of Minneapo-
lis. To me, this is much easier than having x1, x2, x3, x4, . . . , x26,
x27, x28.

However, a consequence of this is that you need to ask for the
variables separately. Despite the effort, this results in output that
is much more human-readable than before.

print "Duluth:"

print myprogram.get_values(d)

print "Two Harbors:"

print myprogram.get_values(t)

and so forth.

4.21.3. The Polyhedron of a Linear Program

You are probably familiar with the way of solving a linear program by draw-
ing lines in the plane. If not, see the applet “Finding the Feasible Region,”
on www.gregorybard.com.

Just as two-variable problem divides the coordinate plan into (convex)
polygonal regions, three-variable problems divide ordinary three-dimensional
space into (convex) polyhedra. Sage can graph these, and that is described
in the electronic-only online appendix to this book “Plotting in Color, in
3D, and Animations,” available on my webpage www.gregorybard.com for
downloading.

4.21.4. Integer Linear Programs and Boolean Variables

The set of problems that can be modeled by linear programming becomes
considerably larger when some variables are permitted to be designated as
“integer-only.” If only a few variables are so designated, then the problem
is solved as several linear programs, using a method called “Gomery Cuts”
or another method called “Branch and Bound.” If many variables are so
designated, then the problem might take a very long time to solve.

In any case, Sage has this feature built-in. To show that the variables
x[i] can only be non-negative integers, whereas the variables y[i] can be
non-negative real numbers, just type

x = LP.new_variable(nonnegative=True, integer=True)

y = LP.new_variable(nonnegative=True)

Furthermore, you can type

y = LP.new_variable(nonnegative=True, integer=False)

to really drive home the point to a human reader.
Boolean variables also come up from time to time. There are variables

that can only be permitted to be 0 or 1, and nothing else. To show that all
the variables z[k] are of this form, we type

z = LP.new_variable(binary=True)

4.22. DIFFERENTIAL EQUATIONS 191

4.21.5. Further Reading on Linear Programming

Like many topics, choosing what book to read on Linear Programming de-
pends upon if you are looking for information about theory or practice.

• For the theory of how large linear programs are solved with the
simplex method, I recommend Linear Programming: An Introduc-
tion With Applications, by Alan Sultan, self-published in the Cre-
ateSpace Independent Publishing Platform in 2011. This book is
suitable for students who have not had much coursework in math-
ematics, as well as those who have.
• For the myriad of applications, a great (and remarkably under-

standable) source is Optimization in Operations Research by Ron-
ald Rardin, published by Prentice Hall in 1997.

4.22. Differential Equations

I think for many of us, we were told at a young age that mathematics is
the key to understanding the universe, or at least the universe of science.
This attribution has been made by many through the centuries, but its most
famous7 phrasing is by Galileo (–) in The Assayer,

. . . in this grand book—I mean the universe—which stands
continually open to our gaze, but it cannot be understood
unless one first learns to comprehend the language and
interpret the characters in which it is written. It is written
in the language of mathematics, and its characters are
triangles, circles, and other geometrical figures, without
which it is humanly impossible to understand a single word
of it; without these, one is wandering around in a dark
labyrinth.

However, it is often not until the course Differential Equations, relatively
late in the mathematical education of some students, that this promise is
delivered. Suddenly, with the contents of that course, many of the hardest
problems in physics, chemistry, ecology, and finance are rendered transpar-
ent and facile—to the point where they become mere homework problems.

Sadly, realistic problems from actual applications are often dirty—the
coefficients have decimal points, the equations are not cleanly solvable (es-
pecially if you include air resistance), and some problems are just plain diffi-
cult. This where Sage can be of a genuine service to a student. The student
can focus on modeling phenomena and correctly posing the problem—the
tedium of numerical solutions or series solutions can be best delegated to the
computer. By this division of labor between man-and-machine, considerably
harder and more realistic problems can be tackled than by a single human
working in isolation. This topic is the crown jewel of applied mathematics,

7Here I use the standard translation, by Stillman Drake.

192 4. ADVANCED FEATURES OF SAGE

and the author strongly encourages any student to explore far beyond the
boundaries of the undergraduate course and penetrate deeply into advanced
topics.

Luckily, an entire book has been written to teach the Differential Equa-
tions course using Sage. The book is Introduction to Differential Equations
Using Sage, by David Joyner and Marshall Hampton, published by Johns
Hopkins University Press in 2012. That book covers a wide array of top-
ics related to differential equations, and therefore it would be redundant to
reproduce all of that here.

Instead, we will show how to solve simple differential equations, then
move on toward initial-value problems, and the construction of slope fields.
Then I present a capstone problem which is modeling the trajectory of a
torpedo, including the force of hydrodynamic drag. While Sage is extremely
capable of numerical solutions (with Runge-Kutta methods), series solu-
tions, boundary-value problems, systems of ordinary differential equations,
separation of variables, and so forth—the reader is referred to the Joyner-
Hanson book for those procedures.

4.22.1. Some Easy Examples

If we wanted to solve the differential equation

dy

dx
+ y = 7

then we have to type the following:

y = function(’y’,x)

h = desolve(diff(y,x) + y == 7, y)

print "Unsimplified:"

print h

print "Simplified:"

print h.expand()

The first line is a bit new to us. Just as we learned to declare unknown
variables with the var command back on Page 38, we must declare unknown
functions also. The method of declaring an unknown function is with the
function command, noted above. The only purpose of this is to tell Sage
and Python that we don’t know what y(x) is going to turn out to be. In
any case, we get the following response:

Unsimplified:

(c + 7*e^x)*e^(-x)

Simplified:

c*e^(-x) + 7

4.22. DIFFERENTIAL EQUATIONS 193

You can also change diff(y,x) into diff(y,x,2) to make the second
derivative, rendering the differential equation

d2y

dx2
+ y = 7

which results in the response:

Unsimplified:

k2*cos(x) + k1*sin(x) + 7

Simplified:

k2*cos(x) + k1*sin(x) + 7

Now let’s change the line with h to a new differential equation, repre-
senting

y
dy

dx
+ sinx = 0

using the code:

h = desolve(y*diff(y,x)+sin(x)==0, y)

We get a rather different sort of answer:

Unsimplified:

-1/2*y(x)^2 == c - cos(x)

Simplified:

-1/2*y(x)^2 == c - cos(x)

Here, y(x) has been defined implicitly, not explicitly. However, we can
utilize a bit of algebra and see what is really intended:

(−1/2)(y(x))2 = c− cosx

(y(x))2 = 2 cosx− 2c

y(x) = ±
√

2 cosx− 2c

The ± indicates that Sage could not have given us a single function as
an answer. Because of the ±, as written, y(x) would fail the “vertical line
test” and thus cannot be considered a function. In other words, for any
function, choose any specific x in its domain, then there can only be one
y-value for that x-value. Here, we would have two y-values, and that’s not
allowed. The better way to think of it is to imagine two solutions:

y1(x) =
√

2 cosx− 2c

y2(x) = −
√

2 cosx− 2c

Actually, there’s an infinite number of functions that satisfy the differ-
ential equation, because we can pick any value of c that we want. Let’s say
that we choose to include the minus sign (i.e by picking y2(x)) and that we
choose c = 832. How can we verify that this is indeed a solution?

We should type the following code:

f(x) = -sqrt(-2*(832-cos(x)))

print f(x)*diff(f(x), x) + sin(x)

194 4. ADVANCED FEATURES OF SAGE

We get back the response “0,” which means that the original differential
equation is indeed satisfied. I have the habit of always checking the solutions,
because there are so many opportunities to mistype a function—perhaps by
leaving out a minus sign or typing the wrong numeral. Since Sage will do
all the work, it is a pity not to check.

4.22.2. An Initial-Value Problem

Now we’re going to program Sage to solve this differential equation:

d2y

dx2
y + y = x

subject to some initial-value constraints. If we try to solve the problem in
the same style as what we did before, we would type

y = function(’y’, x)

myequation = diff(y, x, 2) + y == x

desolve(myequation, y)

That code produces the output:

k2*cos(x) + k1*sin(x) + x

That’s easy enough to check by hand:

f(x) = k2(cosx) + k1(sinx) + x

f ′(x) = −k2(sinx) + k1(cosx) + 1

f ′′(x) = −k2(cosx)− k1(sinx)

f ′′(x) + f(x) = (−k2(cosx)− k1(sinx)) + (k2(cosx) + k1(sinx) + x)

= (−k2 + k2)(cosx) + (−k1 + k1)(sinx) + x

= x

As it turns out, if we have an initial value problem, such as y = 2
at x = 10 and dy/dx = 1 at x = 10, then we will make only one tiny
modification. We change the third line to

desolve(de, y, ics=[10,2,1])

where ics refers to “initial conditions.” The [10, 2, 1] signifies that
y(0) = 10, y′(0) = 2, and y′′(0) = 1. Now we get the following answer:

x - 8*cos(10)*cos(x)/(cos(10)^2 + sin(10)^2) -

8*sin(10)*sin(x)/(cos(10)^2 + sin(10)^2)

Of course, sin2(10) + cos2(10) = 1, so we should interpret this as

f(x) = x− (8 cos 10) (cosx)− (8 sin 10) (sinx)

If we want to check our work, we need a slightly longer snippet of code:

y = function(’y’, x)

myequation = diff(y,x,2) + y == x

f(x) = desolve(myequation, y, [10,2,1])

print "f(x) = ", f(x)

4.22. DIFFERENTIAL EQUATIONS 195

fprime(x) = diff(f(x), x)

fprimeprime(x) = diff(fprime(x), x)

print "f(10) = ", N(f(10))

print "f’(10) = ", fprime(10)

print fprimeprime(x) + f(x) - x

That code above produces the output below:

f(x) = x - 8*cos(10)*cos(x)/(cos(10)^2 + sin(10)^2) -

8*sin(10)*sin(x)/(cos(10)^2 + sin(10)^2)

f(10) = 2.00000000000000

f’(10) = 1

0

As you can see, the output above verifies our three requirements: first,
that f(10) = 2; second, that f ′(10) = 1; third, that f(x) satisfies the
differential equation f ′′(x) + f(x) = x.

4.22.3. Graphing a Slope Field

Suppose I’d like to solve the differential equation:

dy

dx
+
y

x
+ x = 2

with initial conditions y(2) = 4. However, I’d like to know how the solutions
would vary under other initial conditions also. First, I should solve the
initial-value problem as we did in the previous subsection. I should type the
following code:

y = function(’y’,x)

myequation = diff(y,x) + y/x + x == 2

h = desolve(myequation, y, [2, 4])

print h.expand()

Now I have the answer:

-1/3*x^2 + x + 20/3/x

which really means

f(x) =
−1

3
x2 + x+

20/3

x

and therefore

f ′(x) =
−2

3
x+ 1− 20/3

x2

as well as
f(x)

x
=
−1

3
x+ 1 +

20/3

x2

196 4. ADVANCED FEATURES OF SAGE

allowing us to conclude that the solution is correct by checking:

f ′(x) +
f(x)

x
+ x =

(
−2

3
x+ 1− 20/3

x2

)
+

(
−1

3
x+ 1 +

20/3

x2

)
+ x

=

(
−2

3
+
−1

3
+ 1

)
x+ (1 + 1) +

(
−20/3

x2
+

20/3

x2

)
= 0 + 2 + 0 = 2

The new step we’re going to take is that we’re going to solve the original
differential equation for dy/dx. In this case, we obtain

dy

dx
= −y

x
− x+ 2

which means

dy

dx
=

(
1

3
x− 1− 20/3

x2

)
− x+ 2 =

−2

3
x− 20/3

x2
+ 1

and note that all solutions to the differential equation must obey that rela-
tionship, not just the one that satisfies our initial conditions.

Next, we’re going to construct a slope field plot. For every position on
the coordinate plane, we can use the equation above to find what dy/dx
should be. Sage will select about 400 points, in a 20× 20 pattern, forming a
grid over the coordinate plane. For each point, Sage will compute dy/dx at
that point, and will draw a vector with that slope, centered on that point.
Our plot will cover 0 < x < 6 and −5 < y < 15, and we will also plot our
particular f(x) from the above, superimposed on the same image. Here is
the code:

var("y")

f(x) = -1/3*x^2 + x + (20/3)/x

P1 = plot_slope_field((-2/3)*x - (20/3)/x^2 + 1, (x, 0, 6),

(y, -5, 15), headlength = 4, headaxislength=3)

P2 = plot(f(x), (x, 0, 6), ymax=15, ymin=-5)

P = P1 + P2

P.show()

That code produces the following plot:

4.22. DIFFERENTIAL EQUATIONS 197

As you can see, our solution (the solid curve) matches all the vectors that
are very near to it. In some ways, our solution is like connecting a sequence
of adjacent vectors, head-to-tail, to get a sweeping curve that takes us from
x = 0 to x = 6. Likewise, all other solutions would be similar sweeping
curves. If you had a different initial condition, you’d start at a different
point, but you’d still connect one vector to another, head-to-tail, to get a
sweeping curve.

A brief word is in order about the two options

headlength = 4, headaxislength = 3

Experts in differential equations prefer to not have arrowheads on their
vectors when making slope field plots. I guess this makes sense, because
they might crowd the image (especially if the vectors are close together).
Furthermore, the arrowhead always goes on the right of the line segment
representing the shaft, so the arrowhead actually conveys zero additional
information. On the other hand, I really do prefer the arrowheads to be
there, because they are visually appealing and because they are useful to
students who are just beginning their exploration of differential equations.
The reader might want to experiment by backspacing over those two options
to see how the image changes when those options are deleted.

4.22.4. The Torpedo Problem: Working with Parameters

Let’s suppose that I wanted to solve the differential equation for a tor-
pedo accelerating underwater, from a deep submarine up to the surface. Of
course, the force of hydrodynamic drag will not be negligible, and I have to
include it. The weight of the torpedo and the thrust of the engine would be
important characteristics as well. First we start with a general equation

ma = ΣF = −kv︸︷︷︸
drag

− mg︸︷︷︸
weight

+ T︸︷︷︸
thrust

198 4. ADVANCED FEATURES OF SAGE

where m is the mass of the torpedo, k is some coefficient of drag, g =
9.82 m/s2 is the acceleration due to gravity, and T is the thrust of the
torpedo’s engine. Next, I can make this a differential equation by making
altitude y(t), the velocity y′(t) and the acceleration y′′(t). (By the way, I
use the convention that “up” is positive and “down” is negative.) At this
point, I have

my′′(t) = −ky′(t)︸ ︷︷ ︸
drag

− mg︸︷︷︸
weight

+ T︸︷︷︸
thrust

which we will now enter into Sage. We will analyze the code below, line by
line.

var("m k T g t")

y = function(’y’, t)

general_equation= m*diff(y, t, 2) == -k*diff(y, t) - m*g + T

my_equation = general_equation(m=1000, k=0.5, T=20000, g=9.82)

f(t) = desolve(my_equation, y, [0, -2000, 0])

print "y(t) = ", f(t)

plot(f(t), 0, 20, gridlines="minor")

The first line there declares five variables, as we’ve seen throughout this
book. The second line declares that the function y(t), the altitude at time t,
is unknown for now. Then you have a faithful reproduction of the governing
differential equation as the variable general equation, in the third line.

The fourth line substitutes 1000 kg for the mass of the torpedo, 0.5 for
the coefficient of drag, 20,000 N for the thrust, and the usual 9.82 m/s2 for
g. Confusingly, the units on the coefficient of drag are kg/s, because that’s
how we can get Newtons after multiplying that coefficient by a velocity in
m/s.

Having the assignments of the parameters at the top of the program
allows us to experiment with different values of those parameters, to see the
impact on the final solution. Shortly we will add that the torpedo has initial
depth of 2000 m and initial velocity of 0 m/s.

The fifth line, no doubt familiar by now, will use desolve to solve this
differential equation. We give the initial condition that at t = 0, the altitude
is y = −2000 m and the velocity is dy/dt = 0 m/s. The answer gets stuffed
into f(t).

By the time we reach the sixth line, f(t) is known, because desolve

computed it. The need for two functions, y(t) and f(t) confuses some stu-
dents. Think of y(t) as a placeholder for where the final answer will go, but
f(t) is the actual answer. For example, in 3x+ 5 = 5x− 3, the placeholder
for the final solution is x but the actual answer is 4.

In any case, the solution we get is

y(t) = 20360*t + 40720000*e^(-1/2000*t) - 40722000

4.23. LAPLACE TRANSFORMS 199

and in addition, we get a very nice plot:

If you look at the graph closely, you will see that for the rightmost
25% of the time, the graph looks like a line. Also, for large values of t,
our function y(t) will be a line. Without the force of hydrodynamic drag,
however, our function y(t) would be a parabola. Therefore, we can see that
the force of drag does not merely change the solution quantitatively, but
rather qualitatively. The slope of that line is called “the terminal velocity”
and at that velocity, the force of drag is equal to the thrust. Of course, it
should be noted that for y > 0 the torpedo is above the water and therefore
a completely different model must be used at that stage.

4.23. Laplace Transforms

The Laplace Transform, named for Pierre-Simon de Laplace (–),
is delightful in so many ways. First, it renders many difficult problems in
Differential Equations into mere College Algebra problems, though often
rather complicated ones. Second, it is an amazing analogy between two
worlds—the world of time, t, our world—and the world of transform space,
s, which is an alien world to our thinking, yet one that we can use to solve
important and practical problems. Third, to compute a Laplace transform
by hand is a great review of the techniques of integration—offering a review
of Calculus II, typically a year or more after it was taught. Let’s now see
how to compute Laplace Transforms in Sage.

4.23.1. Transforming from f(t) to L(s)

For our opening example, we will find the L(s) that matches up with f(t) =
t cos(t) in our world. We would type

var("s")

f(t) = t*cos(t)

L(s) = laplace(f, t, s)

200 4. ADVANCED FEATURES OF SAGE

print L(s)

and we receive back the response:

2*s^2/(s^2 + 1)^2 - 1/(s^2 + 1)

Let’s just change f(t) to a new function, keeping the other four lines the
same. Now we consider f(t) = 5tet−3 as our example. We change only the
second line to the following:

f(t) = 5*t*exp(t-3)

which results in the response:

5*e^(-3)/(s - 1)^2

After all these years, it is still shocking to me how an enormous collection
of functions, some of which are rather complex in terms of t, merely become
rational functions of s. Of course, that’s the whole point: if the functions
did not become vastly simpler in the transform world, then there would be
no reason to transform them in the first place!

4.23.2. Computing the Laplace Transform “The Long Way”

Because the Laplace Transform is defined as

L(s) =

∫ ∞
0+

f(t)e−st dt

we normally would imagine that the code for computing the Laplace Trans-
form of our previous example would be as below:

var("s")

f(t) = 5*t*exp(t-3)

L(s) = integral(f(t)*exp(-s*t), t, 0, oo)

print L(s)

However, we get an error from Sage, that consists of a lot of uninter-
pretable lines, followed by the following text as the last two lines. Remember:
in Sage, the last lines of an error message are what are most important.

ValueError: Computation failed since Maxima requested additional

constraints; using the ’assume’ command before integral evaluation

may help (example of legal syntax is ’assume(s-1>0)’, see

‘assume?‘ for more details)

Is s-1 positive, negative or zero?

As you can see, Maxima, the package inside of Sage that computes in-
tegrals, is confused about the sign of s > 1. Therefore, we insert the line
assume(s>1) immediately above the line containing the integral. The first
time you saw the assume command was probably on Page 60, and while
there might be other uses for it, I’ve only ever seen it used to help the
integration and summation algorithms reach a conclusion. It is very rare.
Another example, in a summation, can be found on Page 184.

After doing this, we get the result

5*e^(-3)/(s - 1)^2

4.23. LAPLACE TRANSFORMS 201

which is undoubtedly correct. However, out of curiosity, we might want to
try the other two cases, namely assume(s<1) and assume(s==1). However,
we get the error message below in that case (after a lot of meaningless lines).

ValueError: Integral is divergent.

In summary, we feel as though Maxima is justified in demanding that
explicit assumption, because the integral was not convergent without that
assumption. Furthermore, the laplace command does this all for you, which
is a nice convenience.

4.23.3. Transforming from L(s) to f(t)

Let’s now see how to convert our L(s) from transform space back into our
world. The code to be typed is

var("s t")

L(s) = 5*e^(-3)/(s - 1)^2

print inverse_laplace(L(s), s, t)

That code produces the correct answer:

5*t*e^(t - 3)

Alternatively, we can try challenging Sage with a harder problem. Imag-
ine after a Control Systems Engineering problem that you have L(s) =
1/(s3 + 1) as your final answer. Computing the inverse transform is going
to be a bit challenging by hand, because you have to do a partial fraction
decomposition. Sage, however, can compute it easily. We simply change the
middle line of the above code to

L(s) = 1/(s^3+1)

That produces the answer given below:

1/3*(sqrt(3)*sin(1/2*sqrt(3)*t) - cos(1/2*sqrt(3)*t))*e^(1/2*t)

+ 1/3*e^(-t)

However, that function is very hard to comprehend. For example, if I
have to put this function into a technical mathematical paper, then I have
to figure out how I’m going to encode it into LATEX. Luckily, Sage can help
with this. If I replace the last line with

latex(inverse_laplace(L(s), s, t))

Then I get the frightening response

\frac{1}{3} \, {\left(\sqrt{3} \sin\left(\frac{1}{2} \, \sqrt{3} t

\right) - \cos\left(\frac{1}{2} \, \sqrt{3} t\right)\right)}

e^{\left(\frac{1}{2} \, t\right)} + \frac{1}{3}

which I can insert into my mathematical paper in LATEX. It encodes into
the following:

f(t) =
1

3

(√
3 sin

(
1

2

√
3t

)
− cos

(
1

2

√
3t

))
e(

1
2
t) +

1

3

which is much more readable.

202 4. ADVANCED FEATURES OF SAGE

4.24. Vector Calculus in Sage

In this section, we’ll learn how to use Sage to compute the more impor-
tant8 operators in Vector Calculus including the divergence, the curl, the
Laplacian, the Hessian and the Jacobian, as well as how to have Sage com-
pute double integrals. It might be useful to review the material on Contour
plots (Section 3.5 on Page 104), and the material on Vector Field plots (Sec-
tion 3.7 on Page 114) as that will permit you to graph the many examples
throughout this section.

Please do not feel bad if you find this material confusing. While physics
faculty tend to know this material very well, most mathematics faculty to
not have these formulas at their finger tips, unless they have taught the
course recently or it is their research area. The phenomenally famous study
guide for teaching this material to engineers is a book called Div, Grad, Curl,
and All That: an Informal Text on Vector Calculus, by Harry Moritz Schey,
published by W. W. Norton and Company. The fourth edition was published
in 2004, but the first edition was published in 1973. The longevity of the
popularity of this textbook is a testament to its uniquely chatty, almost
sarcastic, conversational tone.

4.24.1. Notation for Vector-Valued Functions

Before we start, we are going to use the following notation throughout this
section. A mathematical function f that takes an n-dimensional vector as

input, and which outputs an m-dimensional vector, is written ~f : Rn → Rm.

Notice that this notation is consistent with linear algebra. If ~f(~x) = A~x for

some m× n matrix A, then ~f : Rn → Rm.
The functions that we see in most of Multivariate Calculus would be

those like

g(x, y, z) = x2 + y3 + z4 + xyz2

which have a multivariable (or vector) input, but a single output. This is
indicated by g : R3 → R. In contrast, the functions we learn about during
Calculus I are functions like b(x) = 2e−x and those are written as b : R→ R.

The least common case, which is not all that rare, is a function with one
input and many outputs (or a vector output). An example of that would be
a function that gives the position of an aircraft in R3 at any point in time,
such as

~s(t) =< 200 + 3t, 300− t, 400 + 5t >

which would be denoted ~s : R→ R3.
In summary, the dimensions of the input go on the first R and the

dimensions of the output go on the second R. However, the dimension “1”

8Of course, the gradient is the most important operator in Vector Calculus, (at least
in applied mathematics). Usually the gradient is introduced in an earlier course, such
as Multivariate Calculus, but we learned how to compute gradients in Section 4.3.2 on
Page 135. Therefore, we do not repeat it here.

4.24. VECTOR CALCULUS IN SAGE 203

is never written. The hat on ~f and ~s were included because ~f and ~s have
multidimensional (or vector) outputs and it was excluded on g and b because
g and b have one-dimensional (or scalar) outputs.

4.24.2. Computing the Hessian Matrix

The Hessian9 of a function R3 → R is given by

H =


∂2f
∂x∂x

∂2f
∂x∂y

∂2f
∂x∂z

∂2f
∂y∂x

∂2f
∂y∂y

∂2f
∂y∂z

∂2f
∂z∂x

∂2f
∂z∂y

∂2f
∂z∂z


and consists of all possible second partial derivatives, arranged in a 3 × 3
matrix. For other dimensions, the definition is modified in the obvious way.
We will continue to use our example from the gradient section on Page 135.
Specifically, we consider

g(x, y) = xy + sin(x2) + e−x

For this example, the following code:

g(x,y) = x*y + sin(x^2) + e^(-x)

diff(g, 2)

produces the response:

[(x, y) |--> -4*x^2*sin(x^2) + 2*cos(x^2) + e^(-x) (x, y) |--> 1]

[(x, y) |--> 1 (x, y) |--> 0]

This odd format is to remind you that for each point in the coordinate
plane (x, y), each of the second partial derivatives is a number. However,
there are four of those, so one obtains four separate numbers. The natural
arrangement is as a 2× 2 matrix.

Another way of asking Sage to compute the Hessian Matrix is with the
following code:

g(x,y) = x*y + sin(x^2) + e^(-x)

H = diff(g, 2)

print H(0,3)

print

print H(0,0)

print

print H(sqrt(pi), 2)

As you can see here, we’ve asked for the Hessian but in a numerical
sense. We’ve asked for the specific matrix at the points (0, 3), (0, 0), and

9Named for Ludwig Otto Hesse (–), who is known for results in mathematics
and physics, and pioneering the study of applications of the determinant, but also for
writing a popular elementary textbook on the analytical geometry of lines and circles.

204 4. ADVANCED FEATURES OF SAGE

(
√
π, 2). The responses are what we expect, as noted below:[

3 1
1 0

] [
3 1
1 0

] [
e−
√
π − 2 1
1 0

]
Observe that three out of the four entries in the matrix (all but the

upper-left corner) are locked at fixed values. The upper-left corner varies
with x but not with y. Try other inputs to verify that this is true. Now if you
look at the symbolic Hessian, you’ll see that indeed, three of the four entries
are constants, and the upper-left corner is a function of x but constant with
respect to y.

Sometimes we just want to know the determinant of the Hessian. In
mathematical economics, there are times where producing example functions
f(x, y) with one unique local (and therefore global) minimum is very useful.

When we restrict consideration to functions of two variables, f(x, y)
there is a very useful shortcut. It turns out that this phenomena (namely,
that the local minimum or local maximum is unique) is guaranteed to occur
if the determinant of the Hessian is positive for all points (x, y). This is
the analogous result that univariate functions g(x) have a unique local (and
therefore global) minimum if g′′(x) > 0 for all x. Furthermore, univariate
functions g(x) have a unique local (and therefore global) maximum if g′′(x) <
0 for all x. With that in mind, we can type

g(x,y) = (x + y + 2)*(x + y + 1)*(x + y - 1)*(x + y - 2)

h(x,y) = det(diff(g, 2))

print h(x,y)

to get that determinant of the Hessian very quickly. In this case, the deter-
minant is zero everywhere.

4.24.3. Computing the Laplacian

The Laplacian of a function g : R3 → R is denoted either ∇ · ∇g or ∇2g,
depending on which textbook you are reading, and is defined as

∇ · ∇g = ∇2g =
∂2

∂x∂x
g +

∂2

∂y∂y
g +

∂2

∂z∂z
g

which is the sum of the entries of the main diagonal of the Hessian matrix
of g. The Laplacian is named for Pierre-Simon de Laplace (–).

Essentially, this is the sum of all second partial derivatives, but excluding
the mixed partial derivatives. This operator is not built into Sage, but it is
easy to compute anyway, using existing commands. Consider the function
g : R3 → R that we had seen on Page 202, namely

g(x, y, z) = x2 + y3 + z4 + xyz2

4.24. VECTOR CALCULUS IN SAGE 205

The relevant second partial derivatives are

∂2g

∂x∂x
= 2

∂2g

∂y∂y
= 6y

∂2g

∂z∂z
= 12z2 + 2xy

Therefore, the Laplacian of g is just

∇ · ∇g = ∇2g = 2 + 6y + 12z2 + 2xy

and was easily computed by hand. However, for more complicated functions,
we might prefer to use Sage. For this function g, we would type

g(x, y, z) = x^2 + y^3 + z^4 + x*y*z^2

L(x, y, z) = diff(g, x, x) + diff(g, y, y) + diff(g, z, z)

print "Laplacian:"

print L(x,y,z)

print "Hessian:"

print diff(g, 2)

We obtain the following output:

Laplacian:

2*x*y + 12*z^2 + 6*y + 2

Hessian:

[(x, y, z) |--> 2 (x, y, z) |--> z^2 (x, y, z) |--> 2*y*z]

[(x, y, z) |--> z^2 (x, y, z) |--> 6*y (x, y, z) |--> 2*x*z]

[(x, y, z) |--> 2*y*z (x, y, z) |--> 2*x*z (x, y, z) |--> 2*x*y + 12*z^2]

As you can see, the Laplacian is just the sum of the entries on the main
diagonal of the Hessian.

4.24.4. The Jacobian Matrix

Now we’re going to consider a function ~f : R3 → R3. One way to think of
this vector-valued function

~f(x, y, z) = y~i+ x2~j + 3~k =< y, x2, 3 >

is to think of it as three separate functions, each of which is fi : R3 → R. In
this example, those functions would be

f1(x, y, z) = y

f2(x, y, z) = x2

f3(x, y, z) = 3

~f(x, y, z) = < f1(x, y, z), f2(x, y, z), f3(x, y, z) >

206 4. ADVANCED FEATURES OF SAGE

As you can see, the job of each of f1, f2, and f3 is to tell us one particular

coordinate of ~f . In this case, it is easy to compute the Jacobian10 Matrix,
which is defined as follows

J =


∂f1
∂x

∂f1
∂y

∂f1
∂z

∂f2
∂x

∂f2
∂y

∂f2
∂z

∂f3
∂x

∂f3
∂y

∂f3
∂z


In this example, we would have

J =

 0 1 0
2x 0 0
0 0 0


for the Jacobian Matrix. Sometimes when people use the word “Jacobian,”
they just mean the determinant of the Jacobian matrix. In this case, the
answer would just be 0, because the matrix J has a row of all zeros, and is
therefore obviously singular.

To calculate all these things in Sage, we would use the following code:

f(x,y,z) = [y, x^2, 3]

print "Function:"

print f

print "Jacobian:"

print diff(f)

print "Jacobian Determinant:"

print det(f.diff())

As you can see, Sage considers the Jacobian to be the natural meaning
of the word “derivative” for a function that has a vector input and a vector
output. Upon further thought, this makes sense. Specifically, if the output
of some function is one-dimensional, but with a multidimensional input,
then the Jacobian would be equal/identical to the gradient as a row vector,
and Sage considers the gradient to be the natural meaning of the word
“derivative” for functions for many-input one-output functions.

However, if the determinant of the Jacobian Matrix is desired, one must
explicitly use the det command, like any other determinant.

4.24.5. The Divergence

The divergence is an important operator, but it is not built into Sage. We
saw that the Laplacian operator was not built into Sage either, and we will
see shortly that the curl is also not built in to Sage. However, the divergence
is extremely easy to calculate using existing commands.

10Named for Carl Gustav Jacob Jacobi (–).

4.24. VECTOR CALCULUS IN SAGE 207

For any function ~f : R3 → R3, the divergence is defined by

∇ · ~f = div~f =
∂f1
∂x

+
∂f2
∂y

+
∂f3
∂z

which can be thought of as the sum of the entries on the main diagonal of
the Jacobian matrix. (Sometimes this is called “the trace” of the Jacobian
matrix.) In that sense, it is very similar to the Laplacian, which is the sum
of the entries on the main diagonal of the Hessian matrix.

Observe that for every point in ordinary 3-dimensional space, the diver-
gence will provide us with a number, not a vector. This means that the

divergence of ~f is a function R3 → R.
Let’s now compute an example. Consider the rather fanciful function

~f(x, y, z) = xy2~i+ yz2~j + zx2~k

where we will compute both the divergence and the Jacobian matrix. The
code is below. Since this is an easy example, you might want to compute it
with pencil and paper first.

f1(x,y,z) = x*y^2

f2(x,y,z) = y*z^2

f3(x,y,z) = z*x^2

f(x, y, z) = (f1(x,y,z), f2(x,y,z), f3(x, y, z))

div(x, y, z) = diff(f1, x) + diff(f2, y) + diff(f3, z)

print "Divergence:"

print div(x,y,z)

print "Jacobian:"

print derivative(f)

That code produces this output:

Divergence:

x^2 + y^2 + z^2

Jacobian:

[(x, y, z) |--> y^2 (x, y, z) |--> 2*x*y (x, y, z) |--> 0]

[(x, y, z) |--> 0 (x, y, z) |--> z^2 (x, y, z) |--> 2*y*z]

[(x, y, z) |--> 2*x*z (x, y, z) |--> 0 (x, y, z) |--> x^2]

As you can see, the divergence is equal to sum of the entries of the main
diagonal of the Jacobian matrix.

4.24.6. Verifying an Old Identity

You might have been taught the theorem that the divergence of the gradient
is equal to the Laplacian. On Page 204, we computed the Laplacian of

g(x, y, z) = x2 + y3 + z4 + xyz2

208 4. ADVANCED FEATURES OF SAGE

Therefore, let’s now compute the divergence of its gradient, and see if
we get the same answer that we got earlier. To compute the gradient, we
type

g(x, y, z) = x^2 + y^3 + z^4 + x*y*z^2

print "Original:"

print g(x, y, z)

gradient = derivative(g)

print "Gradient:"

print gradient

which results in the output:

Original:

x*y*z^2 + z^4 + y^3 + x^2

Gradient:

(x, y, z) |--> (y*z^2 + 2*x, x*z^2 + 3*y^2, 2*x*y*z + 4*z^3)

Now with that in mind, we can interpret the three components of the
gradient as f1, f2, and f3. We will program Sage to take the partial deriva-
tives and compute the sum. Use the following code:

f1(x,y,z) = y*z^2 + 2*x

f2(x,y,z) = x*z^2 + 3*y^2

f3(x,y,z) = 2*x*y*z + 4*z^3

Lap(x,y,z) = diff(f1, x) + diff(f2, y) + diff(f3, z)

print "Laplacian:"

print Lap(x, y, z)

Finally, we get the output:

Laplacian:

2*x*y + 12*z^2 + 6*y + 2

As you can see, this is an exact match for the Laplacian that we had
computed on Page 204. We have now verified that the divergence of the
gradient (of this particular function) is equal to the Laplacian (of this par-
ticular function). That’s a far cry from proving the theorem in general, but
it is nice to know that we can at least verify individual instances.

4.24.7. The Curl of a Vector-Valued Function

The curl of a function ~f : R3 → R3, of the form

~f(x, y, z) =< f1(x, y, z), f2(x, y, z), f3(x, y, z) >

is denoted ∇× ~f = curl~f and is computed by

∇× ~f = curl~f =

(
∂

∂y
f3 −

∂

∂z
f2

)
~i+

(
∂

∂x
f1 −

∂

∂z
f3

)
~j+

(
∂

∂x
f2 −

∂

∂y
f1

)
~k

4.24. VECTOR CALCULUS IN SAGE 209

which is a formula that surely is not very easy to memorize. Accordingly,
there is a trick to remembering it.

A Trick for Remembering the Curl Formula:

Personally, I’ve always been frustrated that the curl is so hard to calculate,
particularly because it is the most important operator after the gradient in
any engineering or physics applications. There is actually a semi-nonsense
memory hook for remembering how to take the curl when doing mathematics
by hand. Consider

det


~i ~j ~k

∂
∂x

∂
∂y

∂
∂z

f1 f2 f3

 =

= det

[
∂
∂y

∂
∂z

f2 f3

]
~i− det

[
∂
∂x

∂
∂z

f1 f3

]
~j + det

[
∂
∂x

∂
∂y

f1 f2

]
~k

=

(
∂

∂y
f3 −

∂

∂z
f2

)
~i−

(
∂

∂x
f3 −

∂

∂z
f1

)
~j +

(
∂

∂x
f2 −

∂

∂y
f1

)
~k

= curl~f

Essentially, if you can remember that 3×3 matrix, and take its determi-
nant successfully, then you can compute the curl of any function R3 → R3.

You might be curious to know why I called it semi-nonsense. The reason
is that ∂/∂x is an operator, and computing

∂

∂x
f2

is not a multiplication in any way, shape or form. Yet, the process of com-
puting those 2× 2 determinants is exactly and precisely two multiplications
separated by a subtraction. However, when following the above process
blindly, the symbols do work out to be in the correct spots visually, and
therefore the memory hook is useful—even though it doesn’t really make
sense mathematically. This memory hook is the university-level equivalent
to the middle-school joke that (3)(3) should really equal 33.

A Simple Example of the Curl:

Sometimes a simple example is best. The following example was found in
the Wikipedia article “Curl: (mathematics)” on June 29th, 2014. While
I normally would never cite Wikipedia, the exposition is remarkably lucid
in this case; it would be a pity to substitute it with a more complicated
example, merely to avoid the stigma of Wikipedia. I have taken extra care to
make sure that there are no errors in the example, as Wikipedia is famously
error-prone.

210 4. ADVANCED FEATURES OF SAGE

Consider the following function:

~c = y2~i =< y2, 0, 0 >

Since f2 and f3 are the zero function in this case, then we can focus on
f1. We can see that

∂

∂x
f1 = 0

∂

∂y
f1 = 2y

∂

∂z
f1 = 0

and thus the normal formula for the curl simplifies rapidly

∇× ~f = curl~f =

(
∂

∂y
f3 −

∂

∂z
f2

)
~i+

(
∂

∂x
f1 −

∂

∂z
f3

)
~j +

(
∂

∂x
f2 −

∂

∂y
f1

)
~k

= (0− 0)~i+ (0− 0)~j + (0− 2y)~k

= −2y~k =< 0, 0,−2y >

Let’s look at a vector field plot. In order to plot it on a two-dimensional
page, we have to ignore the z-coordinate entirely. That’s fine in this case,
because our example does not use z. We can type

var("y")

plot_vector_field((y^2,0), (x,-1,1), (y,-1,1))

We obtain the image:

As you can see, all the arrows point to the right. The x-coordinate does
not matter; the arrows near the x-axis (those with a small y-coordinate,
in absolute value) have a small magnitude, while those far from the x-axis
(those with a large y-coordinate, in absolute value) have a large magnitude.
Now ask yourself, if this plot was representing a flowing fluid, how would
you expect a paddle-wheel to behave if inserted:

• above the x-axis?
• on the x-axis?
• below the x-axis?

4.24. VECTOR CALCULUS IN SAGE 211

Take a moment to really think about this. (Please do not read further
until you’ve tried to answer that thought experiment.)

In any case, if the paddle wheel is on the x-axis, there would be no
rotation. However, above the x-axis, we would expect clockwise rotation,
and below the x-axis, we would expect counter-clockwise rotation. That’s
because one side of the paddle wheel is being buffeted to much greater extent
than the other. Recalling that clockwise rotation on a two-dimensional piece
of paper indicates a vector into the paper, and counter-clockwise rotation
indicates a vector out of the paper, we see that our answer of < 0, 0,−2y >
makes sense.

• When y is zero, all coordinates of the curl are zero, thus the curl is
zero. (That means no paddle wheel rotation.)
• When y is negative, the third coordinate is positive, thus the curl

points out of the paper. (That means counter-clockwise paddle
wheel rotation.)
• When y is positive, the third coordinate is negative, thus the curl

points into the paper. (Similarly, that means clockwise paddle
wheel rotation.)

Now we must compute this in Sage. The calculus was easy in this ex-
tremely simple example, but in other examples it might be extremely un-
pleasant. The following code-snippet is very handy:

var("y z")

f1 = y^2

f2 = 0

f3 = 0

curl = (diff(f3, y) - diff(f2, z), diff(f1, z) - diff(f3, x),

diff(f2, x) - diff(f1, y))

print curl

Naturally, we get the expected output of (0, 0, -2*y) from that code.

A Harder Example of the Curl:

Now let’s consider a harder example, where we would not want to compute
the curl by hand. A slightly more complicated function is

~f(x, y, z) =< x2y, x+ y + sin(x), 0 >

for which we can use the following code:

var("y z")

f1 = x^2*y

f2 = x + y + sin(x)

f3 = 0

212 4. ADVANCED FEATURES OF SAGE

curl = (diff(f3, y) - diff(f2, z), diff(f1, z) - diff(f3, x),

diff(f2, x) - diff(f1, y))

print curl

fvec = (f1, f2)

plot_vector_field(fvec, (x, -3, 3), (y, -2, 2))

As you can see, we added two lines to make a vector plot, and obtained
the following image:

4.24.8. A Challenge: Verifying Some Curl Identities

Here’s a challenge for you. Open up a good textbook for Vector Calculus.

• Find several functions of the form g : R3 → R and verify that the
curl of the gradient is the zero vector, ~0 =< 0, 0, 0 >.

• Find several functions of the form ~f : R3 → R3 and verify that the
divergence of the curl is indeed 0.

Note: The second one is a bit harder, since neither the curl nor the diver-
gence is predefined in Sage. However, the code-snippet that I used
earlier to compute two examples of the curl should be very useful.

4.24.9. Multiple Integrals

The process of integration in Sage is the same for multiple integrals as it
is for individual integrals. However, there is an alternative notation that
makes things easier to understand.∫ 1

0
xe−x

2
dx

can be written in Sage as

integral(x*exp(-x^2), x, 0, 1)

4.24. VECTOR CALCULUS IN SAGE 213

as was taught in Section 1.12 starting on Page 51. However, the following
syntax is also acceptable

integral(x*exp(-x^2), (x, 0, 1))

That second notation seems undesirable, because it has more characters
and it has nested parentheses. However, we’ll now see that it makes more
sense when working with multiple integrals. Consider the following integral:∫ 1

0

∫ y

0
ey

2
dx dy

In the old notation, this would be

var("y")

integral(integral(exp(y^2), x, 0, y), y, 0, 1)

However, in the new notation, we write

var("y")

integral(integral(exp(y^2), (x, 0, y)), (y, 0, 1))

To me, it seems easier to understand that the “inner” integral has 0 <
x < y and the “outer” integral has 0 < y < 1. This new notation is similar
to the way of expressing intervals that we first saw on Page 104, under the
heading “Backwards Compatibility,” when learning about advanced plotting
techniques.

Chapter 5

Programming in Sage and
Python

As you can see from earlier chapters, many important mathematical tasks
can be done in Sage without having too many lines of code. Often just
a small number of commands will take care of whatever you need to have
done. On the other hand, there are times when we seek to do something
deeper and more complex. Elaborate tasks often require more code, ranging
from a dozen lines or so, all the way up to enormous programs of 10,000
lines written by several developers scattered around the globe over a period
of many years.

In this chapter, we’ll learn how to write intermediate-sized programs in
Sage, to do some interesting mathematical tasks. Since Sage is built on
top of Python, we will be learning respectable percentage of Python along
the way. Of course, Python is a major computer language and has many
features, and we cannot hope to cover all of them here. However, we will
see each of the most common Python commands used in a mathematically
relevant way.

By the way, it is useful to note that this chapter is written assuming
that you know the contents of Chapter 1, and how to use Sage Cloud, but
not necessarily any of the content of the other chapters of this book. The
suggested pace through this chapter is to study sections 5.1 through 5.7,
each on their own separate evening. Perhaps patient and gifted students
can do the sections two at a time, but even this is not recommended. This
material is somewhat heavy, and is better digested in small chunks.

As the Sage examples grow longer, it might become tedious to type them,
letter-by-letter, into your computer. Remember, you can instead cut-and-
paste these lines into Sage—you do not have to retype the examples letter
by letter! Simply highlight the code from the (free online) pdf-version of
this book, give the copy command in your pdf viewer, go to a Sage window,
and give the paste command.

215

216 5. PROGRAMMING IN SAGE AND PYTHON

Similarly, it is really important that you use Sage Cloud for this chapter,
and not the Sage Cell Server. I use the Sage Cell Server almost all the time,
and while the 10-line to 20-line code blocks that we’ll write in this chapter
can and do run well there, you’ll want to keep a permanent record of your
code for many reasons. First, if there is a small glitch in the network, it is
a pity to lose all the code that you’ve been working on for an hour. Second,
frequently when experts program, they will go back to some old code that
they have written and cut-and-paste it into the new program. Third, if you
forget how to do something, it is great to be able to look back at old code,
and see how it was done. Because I am stubborn and overuse the Sage Cell
Server (underusing Sage Cloud), I frequently lose my work and have to start
over from scratch.

Last but not least, I have presented you with challenges throughout
this chapter. Every once in a while, after two or three concepts have been
introduced, I pose a problem that I ask you to solve yourself. Be sure to
actually try these, as they will greatly enhance your ability to learn this
important topic. The only way to learn how to program is to program. I
am confident that you will find the examples relatively easy but useful and
non-trivial. On the other hand, if you are not willing to try these challenges
yourself, then there will be no benefit to you from reading this chapter—you
might as well stop reading now.

5.1. Repetition without Boredom: The For Loop

Many of us have been taught that computers are best at automating repeti-
tive identical (or very similar) tasks. This is great news, because it can save
a human being from doing a tedious and boring task which might take ages
to complete. The best example of this, and the most commonly used, is
called the “for loop.” We’ll learn about that now.

5.1.1. Using Sage to Generate Tables

Let’s say I wanted to generate a list of the first 100 perfect squares. The
code for that would be

for i in range(0,100): j^2

and this means that i will taken on the values 0, 1, 2, 3, . . . , 99 but not 100.
This way the range(0,x) will always have x items in it. That was an easy,
but not terribly useful example. If I’m graphing by hand, I might want to
know the value of a function at points inside −10 ≤ x ≤ 10. Let’s say the
function was f(x) = x3 − x. Then I’d type

for x in range(-10,11):

x^3-x

That was interesting, but not crucial, because we’ve learned how to
make Sage graph directly, on Page 9. However, that is how computers

5.1. REPETITION WITHOUT BOREDOM: THE FOR LOOP 217

graph functions—they will evaluate a function at 1000 appropriate points
that are very close together, and draw 1000 dots, one at each location. To
the human eye, it looks like a very smooth and clear graph. It appears to
be a nice sweeping curve, whereas in reality, it is just a collection of dots.

By the way, did you notice how the first loop, listing the perfect squares,
was all on one line? Meanwhile, the loop about x3 − x was on two lines.
While it is legal to leave everything all on one line, it is considered good style
to use multiple lines. As we learn to make more and more complex loops,
you’ll see why. It is important that every subroutine in a computer program
be readable. Otherwise, it is hard to repair or enhance the program. It is
not sufficient that a computer program merely “just works.”

Now let’s see an example from finance. Let’s say that I want to generate
all possible final amounts for a single-deposit $ 15,000 investment, with
the interest rate unknown, but the duration being 5 years, compounded
annually. Suppose I want to consider all interest rates of the form 1%,
2%, 3%, 4%, etc. . . , up to 29%. The formula for compound interest is
A = P (1 + i)n, and therefore, I would code

for i in range(1,30):

N(15000*(1+(i/100))^5)

The indentation, by the way, is important. Use the tab key for that.
The indentation shows which commands are to be repeated by the for loop.

Note that if you leave out the N() then you get exact fractions (ra-
tional numbers) which looks really funny. Try removing the N() and see
what happens—but make sure each “(” has as corresponding “)” after the
modification.

5.1.2. Carefully Formatting the Output

In any case, that code was kind of hard to read. Alternatively, I can type

for i in range(1,30):

print i,

print " implies ",

print N(15000*(1+(i/100))^5)

A little bit of background information might help here. The indentation
serves to show that the indented commands are subordinate to the for

command. That means they will be repeated. A print command will display
on the screen what ever comes after it, but the comma tells it not to break
to a new line.

Now I recommend you try the following three variations on the above:

• try adding a comma at the end of the third print statement,
• try it without commas at all,
• try it with only the comma after “implies” removed, but the comma

after i being present.

218 5. PROGRAMMING IN SAGE AND PYTHON

Let’s make our subroutine more powerful now. If I wanted to go every
1/4th of one percent, I could do

for i in range(1,120):

print N(i/400),

print " implies ",

print N(15000*(1+(i/400))^5)

which entailed three changes. First, the (i/100) in the big N() became
i/400, to make the steps 1/400 (a quarter of a percent) instead of 1/100
(or one percent). Next, the loop goes to 120 instead of 30, so that I stop at
29.75%, instead of stopping one-fourth of the way there. Lastly, I decided
to make the leftmost print show the actual rate, rather than the value of i,
so that went from print i to print N(i/100). Leaving off the N() in that
first print produces the funny result of Sage trying to reduce the fractions
that comprise the interest rate into lowest terms. Try it yourself and see
what I mean.

We can make our earlier example with x3−x produce more professional-
looking output too. We could type

for x in range(-10,11):

print "x=",

print x,

print " means y=",

print x^3-x

At this point, our code is getting rather “tall” in the sense that we’re
using up a large number of lines but not doing very much of anything.
It turns out that we can save some vertical space by combining the print
statements. This is permitted so long as we keep the commas. For example,
give the following code a try.

for x in range(-10,11):

print "x=", x, " means y=", x^3-x

5.1.3. Arbitrary Lists

Sometimes the list of values you want is kind of arbitrary. For example, if I
wanted to evaluate x3− x at the x-values 2, 5, 7/4, 3/10, and −28/11, then
I would type

for x in [-2, 5, 7/4, 3/10, -28/11]:

print "x=",

print x,

print " means y=",

print x^3-x

As you can see, I just replaced range(-10,11) with the list [-2, 5,

7/4, 3/10, -28/11]. This is an example of how Sage uses the Python list
construct. We’ve also seen that in numerous places throughout the book.

5.1. REPETITION WITHOUT BOREDOM: THE FOR LOOP 219

5.1.4. Loops with Accumulators

You can also give the loop some “memory” by storing information in a
variable. The most common uses of that are to find the sum of the entries
in some list, but you can also use it to find a minimum value, a maximum
value, or the product of the entries. A very old term for adding things up by
using a for loop, from the earliest days of computation, is “an accumulator.”
I find it a useful term, but to a computer scientist it will have an antique
ring to it.

Consider the following snippet of code, which will compute the sum of
the integers between 0 and 1000 (inclusively).

total = 0

for i in range(0, 1001):

total=total+i

print total

Wasteful Loops:

It would be wasteful and unwise to instead print each number from 1 to
1000, and then add them up. The code to do that would be

total = 0

for i in range(0, 1001):

print i

total=total+i

print total

Note the “print i” between the “for” statement and the “total =

total+i” statement. Here there is too much output to display and the list
of numbers is enormous, scrolling downward for a long time. It is important
to avoid such techniques (especially if using a million or a billion numbers)
as important computational resources, such as bandwidth and computing
time, would be thereby wasted. The waste is particularly exaggerated in
a system like Sage because you are using the internet to transfer all those
intermediate values from the Sage server to your web browser. When my
students are frustrated that their code is running extremely slowly, often
the cause is that they have superfluous print statements which are wasting
time.

By the way, did you notice how the 0 was included, but the 1001 was
excluded? This is similar to the examples in Section 5.1.1 on Page 216,
where we evaluated f(x) = x3−x over the domain range(-10, 11), where
-10 was included but 11 was excluded. The reason that Python works that
way is so that range(0, 10) will run exactly 10 times, range(0, 100) will
run exactly 100 times, and range(0, 1000) will run exactly 1000 times. By
the way, each “pass” or “run” of a for loop is called “an iteration.”

220 5. PROGRAMMING IN SAGE AND PYTHON

Computing this Sum Directly:

One last point should be made, from the point of view of pure mathematics.
There is a formula for adding up all the numbers in an arithmetic progres-
sion. An arithmetic progression is a list of numbers where the difference
between two consecutive numbers, anywhere in the list, is always some fixed
constant. That fixed constant is called the common difference. For example,
consider

3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, . . .

or alternatively

72, 69, 66, 63, 60, 57, 54, 51, 48, 45, . . .

as well as

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, . . .

As you can see, these have a common difference of +2, -3, and +1
respectively. The sum of an arithmetic progression is given by

S =
(a+ z)(n)

2

where a is the first member in the progression, z is the last member in the
progression, n is the number of members, and S is the final sum. We can
more directly compute our objective with

S =
(1 + 1000)(1000)

2
= (1001)(500) = 500, 500

obtaining the same answer but with much less computational effort.

5.1.5. Using Sage to find a Limit, Numerically

Let’s say that you wanted to investigate what the function

f(x) = e1/(8−x)

is doing around the value x = 8. Then you could write the following code

for i in range(0,9):

xtemp = 8 - 10^(-i)

print N(e^(1/(8-xtemp)))

which inquires about the values of f(x) at the points

7, 7.9, 7.99, 7.999, 7.9999, 7.99999, 7.999999, 7.9999999, 7.99999999

Those numbers also have the names

8−100, 8−10−1, 8−10−2, 8−10−3, 8−10−4, 8−10−5, 8−10−6, 8−10−7, 8−10−8

Evaluating f(x) there yields the following output

5.1. REPETITION WITHOUT BOREDOM: THE FOR LOOP 221

2.71828182845905

22026.4657948067

2.68811714181614e43

1.97007111401705e434

8.80681822566292e4342

2.80666336042612e43429

3.03321539680209e434294

6.59223253461844e4342944

1.54997674664843e43429448

which is clearly going to infinity. (If 1.54 · · ·×1043,429,448 isn’t “close enough”
to infinity, then I don’t know what is!) Then by changing the 8− 10−i into
8 + 10−i we would obtain

for i in range(0,9):

xtemp=8+10^(-i)

print N(e^(1/(8-xtemp)))

which inquires about the values of f(x) at the points

9, 8.1, 8.01, 8.001, 8.0001, 8.00001, 8.000001, 8.0000001, 8.00000001

which also have the names

8+100, 8+10−1, 8+10−2, 8+10−3, 8+10−4, 8+10−5, 8+10−6, 8+10−7, 8+10−8

resulting in the following output

0.367879441171442

0.0000453999297624849

3.72007597602084e-44

5.07595889754946e-435

1.13548386531474e-4343

3.56294956530937e-43430

3.29683147808856e-434295

1.51693678089873e-4342945

6.45170969282177e-43429449

which is clearly going to zero. (If 6.45 · · ·×10−43,429,449 isn’t “close enough”
to zero, then I don’t know what is!)

Therefore, we can finally conclude

lim
x→8−

f(x) =∞, and also lim
x→8+

f(x) = 0

which are two interesting answers in their own right. The final conclusion,
however, must be

lim
x→8

f(x) = d.n.e.

because we must say that a limit (in general) does not exist if the limit
approaching from the left and the limit approaching from the right do not
equal each other.

222 5. PROGRAMMING IN SAGE AND PYTHON

Caveat:

The exploration of that limit required a bit of work, but not too much, and
it answered a rather difficult question. Thus, we can see that the technique
of “numerical evaluation of limits” has a place in mathematics. Nonetheless,
beware—numerical limits are horribly unreliable!

For example, the sum of the reciprocals of the first n prime numbers
goes to infinity as n goes to infinity. To be precise, I mean the sum

1

2
+

1

3
+

1

5
+

1

7
+

1

11
+

1

13
+

1

17
+

1

19
+

1

23
+

1

29
+ · · ·

goes to infinity. This theorem has a nice but difficult proof and it would not
be enjoyable to go through it at this time.

However, you’d never be able to detect this divergence via a computer.
In fact, as n grows, that sum basically grows like log(log n). (I’m simplifying
this discussion slightly by removing a few details). For example, if your
standard of “close enough” to infinity were 1000, you’d have to wait until

ee
1000

numbers were totaled. The concept of ee
1000

is so large it is not easy
for me to decide how to describe it. Even if your standard of “close enough”

to infinity were 10, you’d have to wait until ee
10

numbers were tabulated,

and note that ee
10

has 9565 digits!
Needless to say that if you were to attempt to calculate this with a for

loop, long before that tabulation terminates the sun will have already turned
into a red giant and we will all be burned to a crisp.

5.1.6. For Loops and Taylor Polynomials

You might know that sometimes, in calculus and higher level courses, you
have to take many derivatives of a function—especially when computing
a Taylor polynomial. Some calculus instructors teach Taylor polynomials
early in the course and some teach them extremely late; a few even skip the
topic. If you have not been exposed to Taylor polynomials before, sometimes
called “Taylor series,” then feel free to skip to the next section on Page 224.
The discussion here is an excursion, not related to the rest of the chapter.

for i in range(0,10):

print i,

print "th derivative is",

print diff(x^3-x,x,i)

As you can see, that calculates the first 9 derivatives of x3 − x, most of
which are zero. Also note that the “0th derivative” is the function itself. It
should be noted, by the way, that Sage can compute the Taylor series for
you directly—without needing you to compute all those derivatives—with
one line of code. That will be explained on Page 173. This example is only
for the purposes of discussion.

5.1. REPETITION WITHOUT BOREDOM: THE FOR LOOP 223

Another fun function is the Lorentz transform from special relativity:

L(v) =
1√

1− v2

c2

where v is the velocity of some object, and c is the speed of light. This
formula describes how objects moving very fast will shrink in the direction
of travel, become more massive, and have time slow down (or dilate) for
them.

If we apply the previous tool to this problem, we would do it as follows:

f(v,c) = 1/sqrt(1-(v^2/c^2))

for i in range(0,10):

print i,

print "th derivative is",

print diff(f,v,i)

which tells you that the 9th derivative is

893025*v/((-v^2/c^2 + 1)^(11/2)*c^10) +

13097700*v^3/((-v^2/c^2 + 1)^(13/2)*c^12) +

51081030*v^5/((-v^2/c^2 + 1)^(15/2)*c^14) +

72972900*v^7/((-v^2/c^2 + 1)^(17/2)*c^16) +

34459425*v^9/((-v^2/c^2 + 1)^(19/2)*c^18)

a calculation that I would not want to do by hand.

5.1.7. If You Already Know How to Program. . .

If you already know how to program, then you’ll recognize at this point that
Sage is operating like a programming language. In fact, Sage operates over
the programming language Python.

• If you know Python, then you can use any Python commands you
want, directly in Sage, without a problem.
• Next, if you do not know how to program in any language, do

not worry about it at this time. You definitely do not need to
know how to program to use Sage. Almost all tasks do not require
programming, and those that do require programming usually do
not require very much—just the rudiments which you’ll learn about
in the next few pages. This chapter has been written with you in
mind, and you will be fairly functional as a programmer by the end
of it (provided that you do all of the challenges.)
• If you know how to program, but not in Python, then rest assured

that Python is an extremely easy language. Anyone who has knowl-
edge of C, C++, Pascal, Java, or C# can learn Python with only1 a
meager investment of time and very little effort.

1My friend Martin Albrecht, a major Sage developer, once called Python “executable
pseudocode.”

224 5. PROGRAMMING IN SAGE AND PYTHON

– If you are an experienced programmer, then you can learn a
lot more about Python at http://www.diveintopython.org

– If you are an intermediate programmer, then you might as
well just read this chapter. You’ll probably read it much more
quickly than a true beginner, but that’s fine. Over the course
of this chapter, you’ll learn a good deal of Python.

5.2. Writing Subroutines

Computer programs are often divided into many small bits and pieces that
carry out separate tasks. Much to the frustration of students, the vocabulary
differs from language to language. Sometimes these chunks of code are
called “methods” or “procedures” but usually they are called “functions.”
Some very old programming languages called them “subprograms.” Python
definitely prefers the word “function.”

This presents us with a major verbal obstacle in mathematical comput-
ing. In math, the word function means something like f(x) = x2 + 7x− 12.
How then can we use the word function to simultaneously mean f(x) and
mean a small chunk of code? Accordingly, in this chapter I will use the
old-fashioned word “subroutine” to mean a segment of code that does some
task, whereas I will use the word “function” to mean something like f(x) =
x2 + 11x− 12. My use of the word subroutine here is rather non-standard,
and most Python experts will be surprised to see that word here. It is a bit
old-fashioned and would sound to the ear like someone saying “gosh darn
it” or “that’s groovy.” However, I think the chapter would be unreadable
if I used the word function to describe both chunks of Python code and
mathematical functions like f(x).

Whether you call them methods, procedures, subprograms, functions,
or subroutines, programming in general (and mathematical programming in
particular) consists of designing these building blocks and then combining
them into some larger software system.

5.2.1. An Example: Working with Coinage

We’re going to start with a very easy subroutine, which would be part of
the programming of a vending machine or a cash register. It is going to
reply with the dollar value for some number of quarters, dimes, nickels, and
pennies. For any readers who are not from the USA, these are coins which
have value $ 0.25, $ 0.10, $ 0.05, $ 0.01. This is a simple task, so that we
can focus on the Python and not on the underlying mathematics.

This is the code we will type:

def coinCount(quarters, dimes, nickels, pennies):

""""This subroutine takes in data about a pile of change, with the

four parameters being the number of quarters, dimes, nickels, and

pennies. Then the total dollar value of these is reported. The

5.2. WRITING SUBROUTINES 225

quantities are assumed to be natural numbers. Please do not use

complex numbers as inputs, as it will horrify a user to find out

that some of their money is imaginary."""

total = quarters*0.25 + dimes*0.10 + nickels*0.05 + pennies*0.01

print "That’s a total of $",

print total

The first line, with the def command, signals Python and Sage that
we’re about to define a new subroutine. We follow this immediately with
the name of the subroutine, and then a list of the variables needed in that
subroutine. Here, we have variables for quarters, dimes, nickels, and pennies.
While in algebra, variables tend to be a single letter—in programming, we
use words so that we don’t have to remember what each variable stands for.
The colon is very important. It indicates that the next few commands are
subordinate to the def statement. The indentation shows specifically which
statements are subordinate.

After that, on the second line, we have a formula that computes the
total value of the coins. Each coin is multiplied by its value in dollars, and
the total is placed in the variable which is unsurprisingly called “total.”
The third line and the fourth line print the amounts in a nicely formatted
human-readable way, as we learned about on Page 217.

We can test our subroutine with 5 quarters, 4 dimes, 3 nickels, and 2
pennies. We would type

coinCount(5, 4, 3, 2)

and we get back, in return, the correct answer shown below.

That’s a total of $ 1.82000000000000

Now it is important to remember that order matters. Consider the
following three calls to this subroutine.

coinCount(1, 3, 2, 1)

coinCount(1, 1, 2, 3)

coinCount(1, 2, 3, 1)

As you can see, all three calls are asking about different piles of change,
and those piles will have different total values. You could imagine that
someone using the subroutine on three different days, who has forgotten the
ordering, might guess the ordering and input those three lines above. The
output produces below illustrates the point: you get a wrong answer if you
put the parameters in the wrong order.

That’s a total of $ 0.660000000000000

That’s a total of $ 0.480000000000000

That’s a total of $ 0.610000000000000

Unlike most computer languages, Python has a solution for those who
cannot remember orderings well. Using the following notation, we label each
value with the variable that we hope it will be assigned to. We will get the
same answer each time.

226 5. PROGRAMMING IN SAGE AND PYTHON

coinCount(dimes=3, nickels=2, pennies=1, quarters=1)

coinCount(quarters=1, pennies=1, nickels=2, dimes=3)

coinCount(pennies=1, nickels=2, dimes=3, quarters=1)

Sage and Python will respond to the above lines with the following
response, indicating that it understood what we were hoping to say, each
time.

That’s a total of $ 0.660000000000000

That’s a total of $ 0.660000000000000

That’s a total of $ 0.660000000000000

That’s a very nice service for those brains which have trouble with or-
derings, whether they are dyslexic or perhaps just temporarily distracted.
However, it does introduce another problem—you have to remember how to
spell the name of each variable. As you can see below, I once left the “r”
out of “quarters,” writing instead “quaters.” Since the computer has not
seen this word before, it does not know how to interpret my remarks, and
therefore provides the following error message.

TypeError: coinCount() got an unexpected keyword argument ’quaters’

One last thing before we continue. In Sage Cloud, below your code
working with coinCount, type on a line by itself coi and hit tab without
hitting enter. As you can see, one of the options presented to you is your
own newly created subroutine! Sage Cloud considers it a legit part of the
world in which you are operating at that time.

5.2.2. A Challenge: A Cash Register

A fun task might be to simulate a cash register. Suppose a small food-
stand in a subway station sells sodas ($ 1.50 each), bananas ($ 0.75 each),
sandwiches of various types (all $ 3.75 each), and bottles of water ($ 2 each).

Write a subroutine that takes five inputs: the number of sodas, bananas,
sandwiches and bottles of water, as well as the amount of cash tendered (for
example, $ 20 or $ 10). Your program should tell the user how much change,
in dollars and cents, is therefore due.

5.2.3. An Example: Designing Aquariums

Now we’re going to write a subroutine that is suitable for a company that
builds custom display aquariums for use in dentist’s offices and other upscale
businesses. Customers come with orders and the cost must be correctly cal-
culated, based on the sizes of the six panels which comprise the rectangular
aquarium.

It turns out that the particular materials that the company is using have
the following costs:

• The bottom of the aquarium is metal, and costs 1.3 cents/sq in.
• The top of the aquarium is plastic, and costs half a cent/sq in.
• The sides of the aquarium are glass, and cost 5 cents/sq in.

5.2. WRITING SUBROUTINES 227

top_cost = 0.5

bottom_cost = 1.3

side_cost = 5

def analyzeAquariumDesign(length, width, height):

"""Here the dimensions of an aquarium are the inputs. The

sizes of the six panels that form the rectangular aquarium

will be printed on the screen, along with their costs. The

costs are computed in terms of the areas of those panels and

the global variables top_cost, bottom_cost, and side_cost.

Finally, the volume and the total cost are displayed."""

bottom_top_area = length*width

front_back_area = length*height

left_right_area = width*height

print "The left/right panels have an area of", left_right_area,

print "costing $", side_cost*left_right_area*0.01

print "The front/back panels have an area of", front_back_area,

print "costing $", side_cost*front_back_area*0.01

print "The top panel has an area of", bottom_top_area,

print "costing $", top_cost*bottom_top_area*0.01

print "The bottom panel has an area of", bottom_top_area,

print "costing $", bottom_cost*bottom_top_area*0.01

print

print "The total volume is", N(length*width*height)

cost = top_cost*bottom_top_area + bottom_cost*bottom_top_area +

2*front_back_area*side_cost + 2*left_right_area*side_cost

print "The total cost is $", cost*0.01

Figure 1. Code to Compute the Materials Cost of an Aquarium

Given a customer preference for the volume of the aquarium, there are
many choices of dimensions and they will have substantially different costs.
Consider a customer who wants a 12,000 cubic inch aquarium. (Note that
12,000 cubic inches is about 52 gallons so that is not a very large aquarium
at all.) We can compute the following prices:

• A choice of 20× 30× 20 has a cost of $ 110.80.
• A choice of 40× 30× 10 has a cost of $ 91.60.
• A choice of 60× 20× 10 has a cost of $ 101.60.
• A choice of 80× 15× 10 has a cost of $ 116.60.

Those prices were computed using the analyzeAquariumDesign subrou-
tine, which you’ll find in Figure 1. The following commands were used, one
at a time, after the subroutine was defined.

228 5. PROGRAMMING IN SAGE AND PYTHON

analyzeAquariumDesign(20, 30, 20)

analyzeAquariumDesign(40, 30, 10)

analyzeAquariumDesign(60, 20, 10)

analyzeAquariumDesign(80, 15, 10)

As you can see, the code has a few new features which you perhaps
have not seen before. The symbol that looks like six apostrophes in a row
is actually a triple quotation mark. Between the triple quotation marks
you can put whatever words you want to explain what your subroutine
does, to some person reading your code. Generally, it is better to use a
few sentences rather than just one. This description is called a “docstring”
and it is very important. Without a good docstring, it is unlikely that
any other person would ever use your code. However, code-reuse is an
enormously important strategy in both industry and academia. It would be
phenomenally expensive to “reinvent the wheel” each time that a computer is
needed to perform some task. By the way, when we used the “?” operator
(see Section 1.10 on Page 47), what we were reading were the docstrings
written by earlier Sage programmers.

The variables top cost, bottom cost, and side cost are used to store
the costs for each part of the aquarium. If I had instead used the actual
number 0.5 at each place where the variable top cost appears, then the
code would have been less readable. Also, the price might change. If the
price becomes 0.6 instead of 0.5, then maybe I might change it only in a
few places—failing to change it everywhere. Then the calculations would
be ruined. However, by using a variable to store the value at the top of the
program, I need only change it in one spot. Making code easy to update and
maintain is also extremely important both in the industrial and academic
worlds.

We saw variables used like this before (see Section 1.6 on Page 32),
however there is some additional useful terminology. When a variable is
created and used exclusively inside of a subroutine then it is called a local
variable. However, these variables are created outside of any subroutine,
and so are visible to all the subroutines; those variables are called global
variables. In many types of programming, global variables are discouraged
but in scientific or mathematical computing, they seem to be more common.
It is considered good programming style to place all the global variables at
the top of the program, so that they can be easily found—however, this is
not strictly necessary. Python and Sage will not object if you were to break
that rule of coding etiquette.

Every other line of the code in Figure 1 was either a print statement or
a mathematical equation. Often in scientific computing, complex tasks can
be carried out with these very simple tools.

By the way, this subroutine analyzeAquariumDesign will become the
basis of an interactive webpage using Sage. Making Interactive webpages

5.2. WRITING SUBROUTINES 229

can be great fun, and it is the topic of Chapter 6. We will explore using this
particular subroutine in Section 6.4 on Page 288.

5.2.4. A Challenge: A Cylindrical Silo

This problem is a slight twist on a classic calculus problem. A farm-storage-
supply company is manufacturing cheap silos. Any particular silo is a cylin-
der (perhaps with radius r and height h) and it is capped with a hemisphere,
also of the same radius r. The goal is to produce a silo with some speci-
fied volume, but using the minimum cost of metal. The classical calculus
problem is to find the silo of a specified volume and minimum surface area.
However, we’re going to add some realism, and say that the cylinder metal
costs 25 cents per square foot, because it is easy to manufacture, and the
spherical metal costs $ 1.50 per square foot, because it is harder to manufac-
ture. We are hoping to minimize costs, which is similar to (but not identical
to) minimizing surface area.

Your challenge is to write a subroutine that takes r and h as inputs. It
should compute and print

• the surface area of the cylindrical part of the silo
• the surface area of the spherical part of the silo
• the cost of each of those and the total cost
• the volume of the silo

Naturally, you’ll want to consult the internet to get the appropriate
formulas for the volume and surface area of a cylinder or a hemisphere.
Frequently, when I’m engaged in some scientific computing, I’ll have to look
up a few minor formulas.

Thanks to the Internet, looking stuff up today is a lot easier now than
it was when I first learned how to program in 1988. Of course, I know what
those formulas are and I could type them here. However, this is a more
realistic exercise when I force you to look up the formulas on the internet,
yourself. It is a better simulation of working in industry, when you will have
remembered the concepts and procedures of mathematics, but will have long
forgotten some of the minor details.

5.2.5. Combining Loops and Subroutines

Sometimes, particularly when first learning about functions, it is neat to
evaluate a function at the natural numbers: 0, 1, 2, 3, 4, 5, 6, . . . , up to
some cutoff value.

The following subroutine will allow us to do just that. We can pick any
function we want, and we can also choose how many terms we want in the
sequence formed.

def functionToSequence(f, howmany):

"""This subroutine takes a function as the first input, and then

evaluates that function at the first ’howmany’ natural numbers.

For example, if howmany is 4, then the f is evaluated

230 5. PROGRAMMING IN SAGE AND PYTHON

at 0, 1, 2, 3."""

for k in range(0, howmany):

print f(k),

print

We can also define the following functions to test our code:

a(x) = 3*x + 5

b(x) = 2 - x

c(x) = 7 + 10*x

d(x) = 8*exp(-0.1*x)

f(x) = 5*3^x

g(x) = (1/8)*2^x

h(x) = (0.125)*2^x

We can now test our code with function to sequence(a, 20) and
see what happens. Likewise, you can use b(x) or c(x) by replacing a with
b or c, and so forth. You will notice some interesting behavior differences
between g(x) and h(x), which are different to Sage despite the fact that to
a mathematician, g(x) and h(x) are the same function. Try it yourself—I
won’t spoil the surprise.

Something I find really neat about Sage is that you can type code like

function_to_sequence(3*x, 20)

and Sage will figure out what you meant. You do not need to define a
separate function like j(x) = 3x to work with 3x as a function.

5.2.6. Another Challenge: Totaling a Sequence

Now I’d like to ask you to return to the subroutine function to sequence

that we just saw immediately in the previous subsection. Modify that sub-
routine to also tabulate the total of the printed numbers. It should display
that total on a separate line, after displaying the sequence itself.

Now test your new subroutine using the function r(x) = 1/(x + 1.0)4,
and see what happens. A mathematician would say that you are computing
the sums of the reciprocals of the fourth powers of the positive integers.

What total do you get? For large values of howmany, how does that
compare to the decimal approximation of the number π4/90? If you have
learned about the Riemann2 Zeta function—written ζ(x)—then you will
recognize that we have just computed ζ(4). The definition is

ζ(x) =

∞∑
j=1

1

jx

2Named for Georg Friedrich Bernhard Riemann (–). He is the Riemann
for Riemann Geometry (the curvature of space), the Riemann Hypothesis, and he also
contributed a lot to the study of prime numbers.

5.3. LOOPS AND NEWTON’S METHOD 231

where j runs through the positive integers, and x might be real, complex,
or imaginary.

5.3. Loops and Newton’s Method

This is a long section but an extremely important one. We’re going to
develop a chunk of code to something mathematically useful—finding the
roots of a function. As we go along, we’re going to explore various ways of
approaching this task. Essentially, we’ll start with a reasonably good bit of
code and then we’ll add features, one at a time, until we have an excellent
bit of code. During that process we’ll see many features of programming lan-
guages, including the “if-then-else construction,” “while loops,” “optional
parameters,” and many others.

5.3.1. What is Newton’s Method?

The next few sections of this book will explain some useful and extremely
common techniques of programming. In order to provide a genuine and in-
teresting mathematical application, we will be examining Newton’s method,
a famous algorithm for finding the roots of functions, or equivalently, numer-
ical solutions to equations. I have written this section assuming that you,
the reader, have never seen Newton’s method3 before at all. If you have
seen Newton’s method before, such as in a calculus class, then you might
want to skim this section quickly, or skip it and proceed with Section 5.3.2
on Page 233. The general concept here is that we would like to generate
a subroutine that operates much like find root does—and in so doing, we
will learn a great deal of mathematics as well as insight into what find root

actually does.
Some equations can be solved with techniques of algebra. Others can

be solved with creative tricks—such as trigonometric identities. However,
many equations simply cannot be solved symbolically. For example, suppose
I want to find one solution to

sinx = 1− x
There is no way to solve this equation using ordinary techniques of algebra.
However, using this procedure called Newton’s method, we can make a series
of successive numerical approximations. These approximations are easy to
calculate, and they tend to become rather good after only a few steps. First,
we observe that a solution to the above equation would be a root of the
following function:

f(x) = 1− x− sinx

We start with the following famous formula:

xnew = xold −
f(xold)

f ′(xold)

3As you might guess, Newton’s Method is named for Isaac Newton (—).

232 5. PROGRAMMING IN SAGE AND PYTHON

that is the core of Newton’s method. We will use as our initial guess x = 0.
Then we have

f(x) = 1− x− sinx and thus f ′(x) = −1− cosx

which we can use as follows:

• With x = 0,
– We have f(0) = 1 and f ′(0) = −2.
– This means that f/f ′ = −1/2.
– Thus, the next value of x will be 0− (−1/2) = 1/2.

• With x = 1/2,
– We have f(1/2) = 0.0205744 · · · and f ′(1/2) = −1.87758 · · · .
– Thus f/f ′ = −0.0109579 · · · .
– The next value of x is 0.5− (−0.0109579 · · ·) = 0.510957 · · · .

• With x = 0.510957,
– Now f(0.510957) = 0.00000307602 . . .
– While f ′(0.510957) = −1.87227 · · · .
– Accordingly, f/f ′ = −0.0000164293 · · · .
– That means the next value of x will be

0.510957− (−0.0000164293) = 0.510973 · · · .

• Note, if you’re following along with a handheld calculator, make
sure that it is set to use “radians.”

If we were to discuss these results in an email or a mathematical pub-
lication, we would say that x = 0 is the first approximation, x = 1/2 is
the second approximation, x = 0.510957 is the third approximation, and
x = 0.510973 is the fourth approximation.

That was not a lot of effort but it wasn’t a super-fast calculation either,
so we might be curious how we did. We’re going to plug our fourth approx-
imation into both sides of the original equation now, and see how close we
managed to get.

• The value of sin 0.510973 = 0.489026196 · · · .
• The value of 1− 0.510973 = 0.489027000 · · · .

We achieved this phenomenal degree of accuracy with only three uses of
Newton’s formula. When we have the computer carryout Newton’s method,
we’ll see that we can get accuracy to the nearest trillionth, relatively rapidly.

Actually, I rounded to the sixth significant figure at various stages, so
perhaps the fourth approximation might actually have been even better if
done on a computer. Using the code that we’re going to develop over the
next few pages, I went to the fifth approximation. The fifth approximate
solution turns out to be

x = 0.510973429388569 · · ·

which has the left-hand and right-hand sides of our equation coming out to
equal for 15 decimal places—accuracy to the nearest quadrillionth.

5.3. LOOPS AND NEWTON’S METHOD 233

Summary:

From this exercise, we can see that Newton’s method has two important
properties. First, once f(x) and f ′(x) as well as the initial guess are given,
then the method is very simple to carry out. Second, the method is not
terribly exciting for a human being to use, because it is repetitive. After
all, once the initial guess and the two functions f(x) and f ′(x) are known,
all we are doing is repeatedly using some formulas several times. These two
features mean that Newton’s method is ideal for a computer, and this is
even more so the case when we realize that the computer has more digits of
precision than we might be wiling to use with our handheld calculator.

Tabular Newton’s Method:

One minor note is that if one is doing this with a handheld calculator and
not a computer, then I find it much easier if one makes a little table to
organize the intermediate steps. For the above example it would be:

x f(x) f ′(x) ratio
0 1 −2 −1/2

1/2 0.0205744 −1.87758 −0.0109579
0.510957 0.0000307602 −1.87227 −0.0000164293
0.510973

Practice Makes Perfect:

Now, if you really want to be certain that you have this computational
technique perfectly, you might want to try one example with a paper and
pencil, aided by a handheld calculator. Try instead to solve

ex = 10x

with the initial condition being x = 4. After you do that, you’ll probably be
very eager to delegate this task to a computer. Your fourth approximation,
after three uses of Newton’s formula, should be around 3.57715206 · · · , with
variation depending on the brand of calculator you are using and how it
handles rounding internally. Indeed, we can check

e3.57715206395730 = 35.7715206395730 · · ·

with any handheld calculator.

5.3.2. Newton’s Method with a For Loop

In Figure 2 we have a good example of a first attempt in implementing
Newton’s Method inside of Sage. We’ll now analyze that code, line by line.

The first line notifies Sage that we are about to define a subroutine. The
name of it will be “newton method” and it will have two parameters, called
f and x old. It is extremely important that the next few lines are indented.
The degree of indentation shows which commands are subordinate to which

234 5. PROGRAMMING IN SAGE AND PYTHON

def newton_method(f, x_old):

""""This subroutine uses Newton’s Method to find a root

of f, and the initial condition is x_old. There will be 10

iterations."""

f_prime(x) = diff(f, x)

for j in range(0, 10):

print "iteration=", j

print "x_old=", x_old

print "f(x)=", f(x_old)

print "f’(x)=", f_prime(x_old)

ratio = f(x_old) / f_prime(x_old)

print "ratio=", ratio

x_new = x_old - ratio

print "x_new=", x_new

print

x_old = N(x_new)

Figure 2. Newton’s Method in Sage, Version 1

others. Since Newton’s Method requires knowledge of the derivative of the
function whose root you are trying to find, we are not surprised to see the
next line defining f prime(x). Note that we cannot use an apostrophe in
place of the prime, as in f ′(x), because the apostrophe already has a meaning
in Python. This minor point was first mentioned on Page 49.

Now we come to a loop that will run 10 times, as signaled by the for

command. As you can see, the loop is mostly print statements, to let the
user know what’s going on. At this point, the syntax of the print command
is likely to be familiar to you, but you can also flip back to Section 5.1.2 on
Page 217.

The three lines of the loop that are not print statements are three
assignments. The first defines “the ratio” as we saw in the previous subsec-
tion. The second assignment defines xnew from xold according to the rules
of Newton’s method.

Finally, we see the line x old = N(x new) which might be confusing.
Basically, during the run of the for loop identified by j = 3, the value of
xold will be the value that xnew had during the run of the for loop identified
by j = 2. This command provides the link between one run of the loop and
the next run of the loop.

5.3. LOOPS AND NEWTON’S METHOD 235

The only surprise would be the use of the N() command, which we pre-
viously had used only to convert an exact (algebraic) form of some number,
perhaps hard to understand, into a floating-point form or decimal—which
is easier to understand but which is necessarily only a mere approximation.

The use of N() here is to force Sage to compute approximately and
not exactly. That might be surprising because one of Sage’s strengths is its
abilities to compute exactly. However, we will see an example in the next
subsection which will reveal to us why I have made this choice.

5.3.3. Testing the Code

Our examples for testing will be the following three functions.

a(x) = x5 + x+ 1

b(x) = xx − 5

c(x) = x3 − 2x+ 1

Take a moment to make sure that you have correctly typed these three
functions, a(x), b(x), and c(x), into Sage. For a(x) we could choose an initial
condition of 0.5 and so we would type

newton_method(a(x), 0.5)

and thereby obtain an eventual answer of x = −0.754877 · · · , which seems
reasonable. (That’s the final value of xold. It should be noted that f(xold)
ends with a final value of 8.32667 · · · × 10−17, which is really very near to
zero. Therefore, we can conclude that this run of our subroutine is a success.
We have successfully computed the root of a quintic polynomial.

However, there’s still room for improvement, as can be seen by scrolling
back to Iteration 5. We see that f(xold) = −7.62168 · · · × 10−14 there and
surely this is “close enough to zero.” Therefore, we have wasted computation
time. That’s not important when analyzing the roots of a single polynomial,
as it might be a difference of a quarter second versus a half of a second. How-
ever, if our project becomes an important part in a larger program (perhaps
to be executed one million times) then wasting half the computation time
would be exceptionally unwise. We’ll remedy this wastefulness a few pages
from now.

Now we can try b(x). Since 22 = 4 and 33 = 27, and 4 < 5 < 27, we
anticipate that the solution to xx = 5 should be found between 2 and 3.
Using the initial condition of 2 results in xold = 2.12937 · · · , which seems
reasonable. We can test the provided answer by asking the value of

2.12937248276016^2.12937248276016

using cut-and-paste (rather than typing). We learn the answer is

5.00000000000003

which is extremely close to 5. We see again the wastefulness of our initial
code because we get an excellent answer as early as Iteration 4.

236 5. PROGRAMMING IN SAGE AND PYTHON

If we were to instead use x = 3 as the initial condition, we get the same
final value of xold. It matches our answer from x = 2 to all 14 decimal
places shown, which is really amazing accuracy. It is worthwhile to ponder
the accuracy implied by agreement to 15 significant digits.

Consider if you were computing the weight of an automobile of approx-
imately 1 metric ton in weight. Accuracy to 15 significant figures would
imply being accurate to the nearest nanogram—or one billionth the weight
of a paperclip (one gram). It is also worth mentioning that we didn’t hit 5
exactly. Methods such as Newton’s Method will produce approximations—
often excellent approximations—but not exact answers.

This comparison between the behavior of b(x) with x = 2 and x = 3 is
meant to indicate to you that the initial guesses merely need be “reasonable”
and do not have to be all that good. However, a “crazy” initial guess, such
as x = 10, produces a failure. In particular, we see that the final value of
f(xold) = 1.30099 × 106 which is not nearly zero. The failure should not
be shocking, however, because we are trying to find values of x such that
xx = 5. I’m sure that we can agree, 1010 is not approximately 5.

Now that we are confident that things are working well, we can wrap
up our checking with c(x). With an initial condition of x = −1 we see that
xold = −1.61803 · · · is the final provided answer, and f(xold) is said to be
zero exactly. This is not precisely true, but what is indicated by the long
string of zeros is that f(xold) is so close to zero that the best estimate of its
value that can be represented (in floating-point form) by Sage is zero itself.
If we wanted to be picky, we could use cut-and-paste to ask Sage

c(-1.61803398874989)

which evaluates to 2.84217 · · · × 10−14. With an initial condition of x = 0
we see that the final value is xold = 0.618033 · · · . This time, the value of
f(xold) = 5.55111 · · · × 10−17. That is excellent accuracy, and we can be
happy that our code works for these examples.

It is interesting to note, in this c(x) case, that the initial conditions of
x = −1 and x = 0 both converged to good answers, but that they converged
to different answers. This frequently happens when f has multiple roots.
Given certain conditions, Newton’s method will converge to a root—often,
but not always, the nearest root.

For fun, we can reconsider our opening problem, from Section 5.3.1 on
Page 231. We wanted to solve sinx = 1− x, for x.

u(x) = 1 - x - sin(x)

newton_method(u, 0)

We can see that in the fifth iteration we have an answer accurate to
10−16, and it matches the solution we had found by hand. Likewise

v(x) = e^x - 10*x

newton_method(v, 4)

is another example that we saw earlier.

5.3. LOOPS AND NEWTON’S METHOD 237

One final note is that with these last three functions, again our compu-
tations were wasteful.

• At Iteration 5, we saw f around a trillionth for c(x).
• At Iteration 5, we saw f roughly 1/9 of a quadrillionth for u(x).
• At Iteration 5, we saw f said to be zero for v(x).
• All of these are surely “more than sufficient accuracy” for any real-

world application, so we should seek out a way to “stop early.”

5.3.4. Numerical vs Exact Representations

This subsection will explore a(x) in a bit more detail, and will explain why
we used the N() command in a new and strange way.

Let’s try changing x old = N(x new) into x old = x new and see what
happens. If we try the initial condition of x = 0.5 we see no difference.
However, if we try x = 1, we definitely see a difference. Try it now, and see
what happens—it is amusing.

Even at Iteration 5 we see the answer

xold =
−12188385459018332151653005986109291290903586

16146170242253095711911994084139951355091803

which is comical. The later iterations have even more digits shown. Of
course, this is not what we had in mind, therefore we should force Sage to
compute numerically. The way we would do this is to change x old = x new

back into x old = N(x new). This means at the start of Iteration 2 we are
guaranteed to be working numerically.

Why did this strange phenomenon of ultra-high exactitude occur with
initial condition x = 1 but not initial condition x = 0.5? The reason has to
do with how Sage interprets numbers. The number 0.5 is already a decimal
and thus Sage assumes that it is a mere numerical approximation. However,
the number 1/2, instead of 0.5, is assumed to be exact. If we use 1/2 in
place of 0.5 with x old = x new instead of x old = N(x new), we will see
a comical number of digits for xold even as early as Iteration 4.

It is amusing to note that using b(x) = xx − 5 and exact computations
produces even more catastrophic, and humorous, consequences.

5.3.5. Working with Optional and Mandatory Parameters

Perhaps the first thing that we should correct would be the wasteful com-
putations. I’m speaking specifically about situations where we’ve gotten
f(xold) down to under a billionth, yet the algorithm keeps going because we
require 10 iterations. However, there will be a side-benefit to this change,
which will be revealed to you in a few paragraphs.

The smart thing to do is to try to have some sort of mathematical
condition whereby the subroutine can determine, on its own, that it is time
to stop. However, we’re going to explore a less sophisticated way of handling
this first, because it is much easier to explain and implement. We are going

238 5. PROGRAMMING IN SAGE AND PYTHON

to let the person calling our subroutine specify how many iterations are to
be done. Of course, that means we need a new parameter to the subroutine,
one which will tell it how many iterations to carry out.

To do this, we will carry out two small changes

• def newton method(f, x old): becomes
def newton method(f, x old, max iterate):

• for j in range(0, 10): becomes
for j in range(0, max iterate):

The first change establishes the third parameter and names it max iterate,
because it is the maximum number of times that the for loop should iterate.
The second change has the value of max iterate take the place of 10 in the
for loop—in other words, the for loop will iterate max iterate number of
times instead of precisely 10 times.

However, we can do still better. The changes we made above would
change our test cases.

• newton method(b, 2) becomes newton method(b, 2, 10)

• newton method(b, 10) becomes newton method(b, 10, 10)

These changes are not difficult, and simply are providing a numerical
value to the max iterate parameter. However, this is not optimal for several
reasons. First, a programmer who has been using our old subroutine, inside
her/his own programs for a long time, would now discover her/his code to be
unable to work at all. That’s because the calls to our subroutine in her/his
programs would have two parameters instead of three, and the subroutine
now requires three parameters. As a result, that programmer’s code will
not operate properly, and she or he will be upset4 with you. Second, an
inexperienced new programmer should not be burdened with understanding
too much about Newton’s method to be able to use our subroutine. We
want as wide an audience as possible to be able to use our code. It would
be better if we set a “standard” value for max iterate and then established
the capability for other programmers to “override” our standard choice. The
mechanism for this in Python is an “optional” parameter.

To implement an optional parameter, we would make this change:

• The old code def newton method(f, x old):

• or alternatively def newton method(f, x old, max iterate):

• becomes instead def newton method(f, x old, max iterate=10):

The effect of this change is that if a max iterate value is given, then
that value will be used. However, if no value is given, then the default value

4This issue, called “backwards compatibility” is an extremely serious one in any soft-
ware project involving more than one programmer. A student who wishes to have any sort
of job at all must take a moment to realize that they will not be the only one programming
a computer at their new company. Therefore, they should take great care to think about
this issue in depth. “Breaking” the code of other people by modifying something without
permission is an outstandingly effective way to get fired.

5.3. LOOPS AND NEWTON’S METHOD 239

of 10 will be used instead. Make this change, and then take a moment now
to test each of the following calls of our subroutine, one at a time.

newton_method(b, 2)

newton_method(b, 2, max_iterate=5)

newton_method(b, 10)

newton_method(b, 10, max_iterate=5)

newton_method(b, 10, max_iterate=100)

As you can see in the last case, given the horrible initial guess of x = 10
for the function b(x) = xx − 5, Newton’s method did converge eventually.
While you have the long output of 100 iterations on the screen, it is very
interesting to see where the performance transitions from “bad” to “good.”
In particular, we see that Iteration 23 has f(xold) = 0.318042 · · · , which
isn’t really a very good approximation of zero at all, whereas Iteration 26
has f(xold) at roughly 19 trillionths, and Iteration 27 has f(xold) less than
one quadrillionth.

When I first learned to program in the late 1980s and early 1990s, it
was common in an implementation of an iterative algorithm like Newton’s
method to have the user press the space bar between each iteration, to
give some sort of flavor of how the algorithm is evolving. That’s not how
software is written in the present era, but nonetheless, it presents a good
thought experiment for us. Imagine yourself having pressed the space bar
to signal “next iteration” 23 times, hoping to solve the problem xx = 5,
and getting a value of f(xold) around 0.318042. How frustrated would you
be? Perhaps very frustrated. Most of us would have quit long before the 23
iteration, and some of us might be tempted to quit at even the fifth iteration.
However, a very patient person would press the button 3 or 4 more times
and get an excellent answer at the 26th or 27th iteration. We can be certain
now that “where to stop” is not obvious, and some degree of patience is
required.

By the way, it is worth noting that optional parameters are not common
among most important programming languages. It is a feature that Python
makes available you, but many languages lack.

5.3.6. Returning a Value and Nesting Subroutines

The general experience of working in scientific computing or numerical pro-
gramming is writing a series of subroutines that each do something impor-
tant, but which mostly accomplish their goal by calling other subroutines—
sometimes those written by you, but more often subroutines written by
others. In this subsection we’re going to experience that by using our
Newton’s method subroutine to compute something that wouldn’t really
be computable without something akin to Newton’s method or one of its
rival methods.

For the sake of example, take a look at the following code snippets:

13 + sin(3*pi + 1/5)

240 5. PROGRAMMING IN SAGE AND PYTHON

log(169) / 2

16 - sqrt(9 - x^2)

Each of those snippets makes sense and is useable because a subrou-
tine, namely sin, log, or sqrt is outputting a number that can be used
with the other numbers according to the rules of arithmetic. Likewise, our
newton method subroutine must also output a number. It only makes sense
that this number should be our very best approximation, which is the final
value of xold and xnew at the end of the subroutine’s run. Note, at the end
of the run, it will always be the case that xold = xnew, so we should not
agonize over which one to select.

To accomplish this outputting of a number, we add the line

return x_old

to the end of the subroutine. This Python command tells Sage to use the
final value of xold as the output of our subroutine.

This change, as well as the changes of the previous subsection, result in
the code that is found in Figure 3. Those lines which have changed since
Version 1 have the # changed annotation or # new along side them.

The symbol # is a very important one. Anything after the # symbol on
any particular line of Python code is entirely ignored. This means that you
can use it for small annotations like “# changed” or perhaps “# new.”

You can also use # for meatier comments, such as a single-line summary
to tell the reader of the code what a few lines of code are intended to do.
Often if a formula comes from some sort of paper or textbook chapter, it is
a good idea to note that fact with this category of “quick” comment.

At the start of this subsection I promised you that we would be using
newton method to accomplish a legitimate computational task. The task
that I have chosen is the computing of the self-logarithm. Given some posi-
tive real number y, we want to compute an x such that xx = y. Our earlier
example of b(x) = xx − 5 would carry out this task for the specific case of
y = 5, but now we’re going to write code that should work for any positive
real number y.

You can probably guess that instead of using b(x) = xx − 5, we will use
b(x) = xx−y. However, this is not the only change, because we need to make
an initial guess. It is easy for a human being to use reasoning to compute a
reasonable initial guess, but a computer does not have the power of reason.
We need a quick and dirty rule to rapidly produce an initial guess—even if
the guess isn’t very good. We will require an initial condition that is fairly
small even for large values of y. Consider 66 = 46, 656, and realize that even
with a 5-digit y, we have the small initial guess of x = 6.

In the end, my choice is to make the initial guess equal to 1 + log10 y,
where log10 means the common logarithm of y. This is not so horrible, as

5.3. LOOPS AND NEWTON’S METHOD 241

def newton_method(f, x_old, max_iterate=10): # changed

"""An implementation of Newton’s Method, to find a root

of f(x) given an initial guess for x. A default of 10

iterations will be carried out unless the optional

parameter max_iterate is set differently.""" # changed

f_prime(x) = diff(f, x)

for j in range(0, max_iterate): # changed

print "iteration=", j

print "x_old=", x_old

print "f(x)=", f(x_old)

print "f’(x)=", f_prime(x_old)

ratio = f(x_old) / f_prime(x_old)

print "ratio=", ratio

x_new = x_old - ratio

print "x_new=", x_new

print

x_old = N(x_new)

return x_old # new

Figure 3. Newton’s Method in Sage, Version 2

the following examples illustrate

1 + log10 46, 656 = 5.66890 · · · instead of 6
1 + log10 27 = 2.43136 · · · instead of 3
1 + log10 4 = 1.301029 · · · instead of 2

I have to be honest here, and tell you that I had to experiment a few
times until I found an initial-guess-selection function that I fought suitable.
Last but not least, we have to decide how to use the optional parameters.
I decided to set max iterate=100 so that I can be sure that I have a very
good answer. There is a downside to using 100 iterations—the output will
be extremely long, and the user will have to scroll. However, we’ll learn how
to mitigate this issue using verbosity control on Page 244.

The final code snippet is to be found in Figure 4. Note that this code
absolutely requires Version 2 or higher of our newton method subroutine,
because Version 1 did not have a return statement.

Now we can test this code by typing

242 5. PROGRAMMING IN SAGE AND PYTHON

def selfLogarithm(y):

"""This subroutine returns x such that x^x = y, where

y is a positive real number."""

g(x) = x^x - y

guess = 1 + log(y, 10)

answer = newton_method(g, guess, max_iterate=100)

what follows is merely testing code

test = answer^answer

print answer, "^", answer, "=", test

print "Desired: ", y

return answer

Figure 4. Code to Compute the Self-Logarithm, using New-
ton’s Method (Version 2 or better).

selfLogarithm(17)

5.3.7. A Challenge: Finding Parallel Tangent Lines

The goal in this challenge is to find an x-value denoted xp, given two func-
tions a(x) and b(x), such that the tangent lines of both functions at x = xp
are parallel. This should be done by calling our implementation of Newton’s
method. The parameters would be a(x) and b(x), and the output should be
the value of xp.

For an even harder challenge, have the subroutine output both tangent
lines in y = mx+ b form. (Be warned: that is a difficult challenge!)

Here are some examples:

• For a(x) = x2 + 2 and b(x) = x3 − x, one answer is xp = 1.
– Observe that a′(1) = 2 and b′(1) = 2
– We get a tangent line for a(x) defined by y = 2x+ 1.
– We get a tangent line for b(x) defined by y = 2x− 2.
– For a graph of this situation, see the plot on the left in Figure 5.

• For a(x) = x2+2 and b(x) = x3−x, the other answer is xp = −1/3.
– Observe that a′(−1/3) = −2/3 and b′(−1/3) = −2/3
– We get a tangent line for a(x) defined by y = (−2/3)x+ 17/9.
– We get a tangent line for b(x) defined by y = (−2/3)x+74/999.
– For a graph of this one, see the plot on the right in Figure 5.

• Your subroutine would identify only one of these two solutions,
unless you did something very sophisticated.

5.3. LOOPS AND NEWTON’S METHOD 243

Figure 5. The Two Cases of Parallel Tangent Lines, from Section 5.3.7

For a different example, consider a(x) =
√
x and b(x) = x2. The unique

solution is xp = 3
√

1/16. Observe that

a′(x) = b′(x) =
3

√
1

2
≈ 0.793700525 · · ·

implying tangent lines of

y = (0.793700525 · · ·)x+ 0.314980262 · · ·

for a(x) and for b(x)

y = (0.793700525 · · ·)x− 0.157490130 · · ·

This last situation can be summarized by the following plot:

5.3.8. A Challenge: Halley’s Method

Edmond Halley (–) was an astronomer and physicist for whom
Halley’s comet is named. However, he was also a friend of Isaac Newton and
helped enlarge the field of study that eventually became known as calculus.

244 5. PROGRAMMING IN SAGE AND PYTHON

One minor discovery of Halley, which has all but been entirely forgotten,
is a root-finding method that is very similar to Newton’s work with Joseph
Rapheson. For example, until 2007, there was no article about this method
on Wikipedia, where many obscure formulas can be found. In any case, here
is the underlying formula:

xnew = xold −
f(xold)f

′(xold)

[f ′(xold)]2 − 1
2f(xold)f ′′(xold)

As you can see, it is more complicated and it requires knowledge of
the second derivative. However, it has excellent convergence whenever ap-
proaching a root r of f(x), provided that both f ′(r) 6= 0 and f ′′(r) 6= 0.
Also, f ′′′(x) must exist, therefore certain functions are excluded. In situa-
tions where f ′′(x) and f ′(x) can be computed easily, Halley’s method can
be an extremely efficient root-finding algorithm.

Your challenge is to modify our code so that it uses Halley’s method
instead of Newton’s method. However, I have a suggestion. First, place
f(x), f ′(x), and f ′′(x) into “temporary variables.” For example, a = f(xold)
and similarly for b and c containing the first and second derivatives. Then
Halley’s large formula above will be much easier to enter into the computer.

5.4. An Introduction to Control Flow

We’re going to expand our capabilities in this section, while programming in
Python and Sage, to include structures which control the flow of a program.
The most common of these, by far, is the “if-then” construction. We’ll see
several examples of that, as well as how to stop a subroutine early (for
example, if it has finished its computations sooner than expected), and how
to announce a custom error message when things go wrong.

5.4.1. Verbosity Control

Verbosity control is when we want to limit how much output we get from
one subroutine. At this moment, we are developing the newton method

subroutine, so we genuinely want the output—to enable us to see what is
really going on. However, our Newton’s method code might be part of a
larger program someday. All that printing will demolish the performance of
the algorithm because anything involving “I/O” (input or output) is always
much slower than computation.

The plan, therefore, typically involves aggregating all the print state-
ments into the same spot, and “protecting” them with an if statement.
This is our first encounter with the if construct, and it is a very easy to un-
derstand use of that command. We will combine this with a new parameter
called “verbose.” Like the max iterate parameter, the verbose parameter
will be optional.

5.4. AN INTRODUCTION TO CONTROL FLOW 245

def newton_method(f, x_old, max_iterate = 10, verbose=False):

changed

"""An implementation of Newton’s Method, to find a root

of f(x) given an initial guess for x. A default of 10

iterations will be carried out unless the optional

parameter max_iterate is set to something else. Set

verbose = True to see all the intermediate stages."""

changed

f_prime(x) = diff(f, x)

for j in range(0, max_iterate):

ratio = f(x_old) / f_prime(x_old) # moved

x_new = x_old - ratio # moved

if (verbose==True): # new

print "iteration=", j

print "x_old=", x_old

print "f(x)=", f(x_old)

print "f’(x)=", f_prime(x_old)

print "ratio=", ratio

print "x_new=", x_new

print

x_old = N(x_new)

return x_old

Figure 6. Newton’s Method in Sage, Version 3

If the verbose parameter is set to True, we will print, and if it is not,
we will not. The code itself is given in Figure 5.4.1. Those lines which have
changed (since Version 2 given in Figure 3) have the # changed annotation
along side them, and those which have been moved have the annotation #

moved. New lines have the # new annotation.
While it looks like a large number of changes, it really is not a major

difference.

• I have added the optional parameter, verbose.
• I have moved all the print statements to the same spot. It is a bit

of a decision as to where to put them. They have to be late enough
to ensure that ratio and x new are actually computed. However,
if I had put the print statements after x old = N(x new) then the
distinction between x old and x new would be lost.

246 5. PROGRAMMING IN SAGE AND PYTHON

• I added the command if (verbose==True):

• All the print commands were indented one level.

The indenting is very important. For example:

• The print statements are indented very far, which shows that they
are subordinate both to the if statement and the for statement.
That means the if statement will be run during each iteration of
the for loop, and the print statements will only be executed if the
parameter verbose is True.
• The x old = N(x new) statement is indented less, which shows

that it is subordinate to the for statement but not to the if

statement—in other words, the condition of verbose being True

or False is of no consequence whatsoever to this line, which will
be executed either way. On the other hand, the line is subordinate
to the for loop. Therefore, each iteration of the for loop will see
this line computed.
• The return x old statement is intended very little. This means

that is not subordinate to the for loop nor is it subordinate to the
if. However, it is still subordinate to the def which means that it
is indeed part of our subroutine. It will be executed once only, not
once for each cycle of the for loop.

You can test this code with any of the following test commands:

newton_method(b, 2)

newton_method(b, 2, verbose=True)

newton_method(b, 2, max_iterate=5)

newton_method(b, 2, max_iterate=5, verbose=True)

newton_method(b, 2, verbose=True, max_iterate=5)

As you can see by the last two lines of test code, the optional parameters
can be given in any order. However, in the def line of any subroutine, the
mandatory parameters must be listed first, and the optional parameters are
listed after that—one cannot mingle the two. This is a rule that Sage has
inherited from Python.

We have a minor technicality to discuss now. In the if statement, we see
two equal signs, or ==. Up to this point, we have used one equal sign. The
key is that if you are testing equality, then you use two equal signs, but if you
are causing equality, then you use one equal sign. For example, if we wanted
to force verbosity to be True, we would be typing verbose=True at some
point in the subroutine. However, in the if statement, we need to check
equality, not force it, so we use two equal signs with if (verbose==True):

to make that happen.
The presence of an optional verbosity parameter is a feature of my pro-

gramming style. Of course, most programmers use this trick and some point
or another, but for me, almost every subroutine that I write has this option.
It makes debugging much simpler, and it is a good programming habit.

5.4. AN INTRODUCTION TO CONTROL FLOW 247

The notion of verbosity control is common in numerical computing.
Sometimes this notion occurs in the humor of numerical analysts. Once
at a meeting of a minor departmental committee, I was prattling on about a
relatively unimportant point, and one of my colleagues got frustrated with
me. He jokingly said “Greg: Enough! Verbose equals false!”

5.4.2. Theoretical Interlude: When Newton’s Method Goes Crazy

Let consider the following function, which after all is just a cubic polynomial,
and therefore not particularly intimidating.

p(x) = x3 + x2 − 5x+ 9

Even its plot is not particularly unusual, as you can see below (showing
−5 < x < 4).

However, look what we get when we try the initial condition x = 2
with Newton’s Method and p(x). The resulting splurge is an error message,
and is reproduced in Figure 7. As you can see, the problem is that during
Iteration 2, we see that f ′(x) = 0.

You might think that this was one isolated example, but you’d be wrong.
Here are three more examples:

• q(x) = x3 + x2 − 56x+ 155 with initial condition x = 3.
• r(x) = x3 + x2 − 85x+ 323 with initial condition x = 3.
• s(x) = x3 − x2 − 8x+ 15 with initial condition x = 1.

The key problem is that Newton’s Method requires us to divide by f ′(x)
and in these examples we see that f ′(x) becomes zero. Since it is forbidden
to divide by zero, the subroutine crashes. (The slang for “dividing by zero”
is “exploding.”) The following examples are polynomials which explode on
Iteration 1, and do not survive even to Iteration 2.

p(x) = x^2 + 8*x - 9

newton_method(p(x), -4)

248 5. PROGRAMMING IN SAGE AND PYTHON

iteration= 0

x_old= 2

f(x)= 11

f’(x)= 11

ratio= 1

x_new= 1

iteration= 1

x_old= 1.00000000000000

f(x)= 6.00000000000000

f’(x)= 0.000000000000000

ZeroDivisionError Traceback (most recent call last)

<ipython-input-1-8a48587f6c88> in <module>()

28 return x_old # changed

29

---> 30 newton_method(p, Integer(2), max_iterate=Integer(20))

<ipython-input-1-8a48587f6c88> in newton_method(f, x_old, max_iterate)

15 print "f’(x)=", f_prime(x_old)

16

---> 17 ratio = f(x_old) / f_prime(x_old)

18

19 print "ratio=", ratio

/home/sageserver/sage/local/lib/python2.7/site-packages/sage/structure/element.so

in sage.structure.element.RingElement.__div__ (sage/structure/element.c:15197)()

/home/sageserver/sage/local/lib/python2.7/site-packages/sage/symbolic/expression.so

in sage.symbolic.expression.Expression._div_ (sage/symbolic/expression.cpp:15716)()

ZeroDivisionError: Symbolic division by zero

Figure 7. The Output of Newton’s Method (Version 2)
When it Crashes Because it Tries to Divide by Zero

q(x) = x^4 - 2*x^2

newton_method(q(x), -1)

newton_method(q(x), 0)

newton_method(q(x), 1)

Actually, it is relatively rare to land exactly upon zero. Other difficulties
can occur when f ′(x) is approximately zero. Consider our previous example
c(x), again a non-intimidating cubic polynomial

c(x) = x3 − 2x+ 1

Even its plot is not particularly unusual, as you can see below (showing
−2 < x < 2).

5.4. AN INTRODUCTION TO CONTROL FLOW 249

Therefore, we can imagine that we have a nice well-behaved function—
until we type the following:

newton_method(c(x), -0.436485)

or even better:

newton_method(c(x), -0.436485285968722)

On my computer, the second example doesn’t make progress until Iter-
ation 79. That’s because f ′(x) passes extremely close to zero.

The question now becomes, what are we going to do about all this? Well
as it turns out, these examples represent phenomenally unlucky choices of
an initial condition. If you instead select a slightly better initial condition
(perhaps by graphing the function), you will see that every example in this
subsection converges quickly and uneventfully.

Accordingly, what good implementations do is that if f ′(x) gets to be
zero or near to zero, they signal an error condition so that the user can
restart with a new and different choice of the initial condition. We will do
this ourselves very shortly, in Section 5.5.1 on Page 253.

5.4.3. Stopping Newton’s Method Early

Several times we have noticed that the computation keeps going long after a
rather accurate answer has been computed. This is wasteful, particularly if
our subroutine might be called millions of times inside of a larger program.
For example, multivariate minimization procedures often involve an entire
Newton’s method computation for each of their iterations, yet one million
iterations of the multivariate solver would not be very unusual.

Accordingly, we should make some sort of cut off. If f(x) is smaller
than some particular value, perhaps one billionth, then we should stop the
computation and report the final answer. We might take a moment to decide
if we want that value to be preset or instead, set by the user. A preset value is
better for users who might not be very familiar at all with Newton’s method,

250 5. PROGRAMMING IN SAGE AND PYTHON

while allowing it to be set by the user would be better for expert users. The
best of both worlds can be achieved by using an optional parameter. The
beginning user need not worry about (or even be told) about the optional
parameter, but the expert can override when needed. Also, since the value
is unlikely to be overridden too often, using an optional parameter keeps
us from having too many things between the parentheses each time the
subroutine is called.

The traditional name for a cut-off value of this kind is “epsilon.” The
Greek letter ε is often used to represent a value of “close enough” in compu-
tational mathematics. In Figure 5.4.3, you’ll find the new code, or Version 4,
of Newton’s method. The key new lines are

if (abs(f(x_old)) < epsilon):

return x_old

The first line says (in Python) what a mathematician would write as
“if |f(x)| < ε then” and the second line, the return statement, tells the
subroutine to return the final answer. It is implicit in that return statement
that the subroutine has completed its computation, and that nothing more of
the subroutine will be run until it is called again. Thus it is not uncommon
for a subroutine to have several return statements, but whenever any of
them are reached, the computation ends.

Some Thoughts on Absolute Values:

The way of writing absolute value in Sage is to use the abs command, as we
first saw on Page 10. It is interesting to note why the absolute value signs
are used mathematically.

Let’s imagine that we instead had made the stopping condition f(x) < ε
instead of |f(x)| < ε. Consider f(x) = 9− x2, and suppose a confused user
uses the initial condition of x = 100. Then we would have f(100) = −91. Is
that a good stopping point? Is x = 100 an approximate root of f(x) = 9−x2?
Of course not! However, −91 < 10−9 is true. To avoid this, we need the
absolute value signs to be able to write |−91| < 10−9, which is of course
false, as desired.

If you take a course in Real Analysis then you might see ample other
examples where “if |f(x)| < k” is used as an abbreviation for −k < f(x) < k.
This is a common trick in mathematical analysis.

Testing Early Termination:

We can see that this new code actually works by typing

b(x) = x^x - 5

newton_method(b(x), 2, verbose=True)

which stops very early. After Iteration 3 we have xnew displayed as the
final output, because f(xnew) was found to be less than epsilon, set as its
default value of one billionth.

5.4. AN INTRODUCTION TO CONTROL FLOW 251

def newton_method(f, x_old, max_iterate = 10,

verbose = False, epsilon = 10^(-9)): # changed

"""An implementation of Newton’s Method, to find a root

of f(x) given an initial guess for x. A default of 10

iterations will be carried out unless the optional

parameter max_iterate is set to something else. Set

verbose = True to see all the intermediate stages.

The algorithm will stop early if |f(x)| < epsilon."""

changed

f_prime(x) = diff(f, x)

for j in range(0, max_iterate):

if (abs(f(x_old)) < epsilon): # new

return x_old # new

ratio = f(x_old) / f_prime(x_old)

x_new = x_old - ratio

if (verbose==True):

print "iteration=", j

print "x_old=", x_old

print "f(x)=", f(x_old)

print "f’(x)=", f_prime(x_old)

print "ratio=", ratio

print "x_new=", x_new

print

x_old = N(x_new)

return x_old

Figure 8. Newton’s Method in Sage, Version 4

Of course, some users might require more accuracy. In this case the code

b(x) = x^x - 5

newton_method(b(x), 2, epsilon=10^(-15), verbose=True)

demonstrates how we can achieve accuracy to a quadrillionth. Amusingly,
only one additional iteration is required.

In general, it is nice to permit the user to control specific details, such
as the standard of “good enough.” For example, someone estimating the
budget deficit of a country would probably be happy with accuracy to the
nearest dollar or penny, and would not want to waste computations on
getting accurate to the nearest billionth of a dollar.

252 5. PROGRAMMING IN SAGE AND PYTHON

5.4.4. The List of Comparators

When writing an if statement, there six common constructions. They are
listed below in their normal mathematical sense as well as the correct Sage
or Python code for them.

Mathematics Sage or Python

if k < 6 then if (k<6):

if k > 6 then if (k>6):

if k = 6 then if (k==6):

if k ≤ 6 then if (k<=6):

if k ≥ 6 then if (k>=6):

if k 6= 6 then if (k!=6):

Note, while it looks nicer to me to write if (k=>6) than to write if

(k>=6), Python will not accept if (k=>6). The correct syntax is if (k>=6)

instead. The way that I remember this particular detail is to recall that it
is common to say “is greater than or equal to” but it is uncommon to say
“is equal to or greater than.”

Also, we should be careful to remember to use == (two equal signs) in-
stead of = (one equal sign) in any if statement, as we learned in Section 5.4.1
on Page 246.

5.4.5. A Challenge: How Many Primes are Less than x?

We’ve been working with Newton’s method for rather a while, so I think it
will be nice to consider a challenge that has nothing to do with Newton’s
method. Consider the following question:

For any integer x > 1, how many primes are found between 1 and x?
More formally, how many primes p are there such that 1 ≤ p ≤ x?

Here’s a hint: you can make a for loop that counts up from 1, 2, 3, . . . ,
x−1, x. Then, for each of those integers z, you could ask Sage is prime(z)

which will return either True or False, accordingly. Using an if statement,
you can either increment a running counter, or not, depending if you get a
True or False answer.

Now for an extra challenge (once you have completed the above) make
an optional parameter list them which is normally set to False. However,
if the user sets it to True then it should print all the primes that it discovers
while counting up from 1 to x.

5.5. More Concepts in Flow Control

In this section, we’ll explore the use of the raise command for unexpected
situations, and more nuanced control based on something called the “if-
then-else” construct.

5.5. MORE CONCEPTS IN FLOW CONTROL 253

5.5.1. Raising an “Exception”

In all sorts of programs one has to handle unusual situations that represent
something going wrong. This can be a division by zero (as we discussed in
Section 5.4.2 on Page 247), a negative number where one was not expected,
or one of a host of other situations. The formal term for these sorts of
situations is to call them exceptions. In the case of Newton’s method, we do
not want f ′(x) to become zero, or to approach zero.

The Python command raise is used to announce that an exception must
be generated because some unusual condition has been detected. However,
it also gives us an opportunity to make some human-readable error message,
that can hopefully help the user figure out what was wrong. By the way,
“raising” an exception is sometimes called “throwing” an exception in other
computer languages like Java. The code that will raise an exception if
f ′(x) = 0 while doing Newton’s Method is given in Figure 5.5.1.

For example, the code

c(x) = x^3 - 2*x + 1

newton_method(c(x), -0.436485285968722, verbose=True, max_iterate=20)

will result in the following output given in Figure 10. The hint “Please
try another initial condition” in the last line of the output would cause the
obedient user to type something similar to

c(x) = x^3 - 2*x + 1

newton_method(c(x), -0.4, verbose=True, max_iterate= 20)

and then Sage cheerfully returns the correct solution, namely 0.618033. . . .
Many other numbers could have been used in place of the -0.4 as the initial
condition.

The primary change in the code to enable this feature is the line

raise RuntimeError(’f_prime(x) got too small! ’+

’Please try another initial condition.’)

which notifies Python and Sage that an exception has occurred and that all
computation should stop. It also informs Sage and Python that the excep-
tion is of the category RuntimeError, as well as providing a nice human-
readable error message. We will not distinguish in this book between the
various types of exceptions, but more advanced books on Python might.

Notice also how we used the + sign to make a longer error message than
can fit on one line. It is not permitted to break a quotation, such as our
error message, across two lines. Therefore, we wrote the quotation in two
pieces—each fitting on one line—and then used the plus sign to tell Sage
that it is actually one long error message. You can see the output generated
in Figure 10. As always, the last line of an error message in Sage is the most
important.

There are many advantages to using the raise command to notify the
user of a major error, rather than just stopping the program. First, you
could imagine that in a large program, some sequence of subroutines might
call a sophisticated multivariate solver, which would call our newton method

254 5. PROGRAMMING IN SAGE AND PYTHON

def newton_method(f, x_old, max_iterate = 10,

verbose = False, epsilon = 10^(-9), hazard = 10^(-4)):

changed

"""An implementation of Newton’s Method, to find a root

of f(x) given an initial guess for x. A default of 10

iterations will be carried out unless the optional

parameter max_iterate is set to something else. Set

verbose = True to see all the intermediate stages.

The algorithm will stop early if |f(x)| < epsilon. The

algorithm with raise an exception if |f’(x)|<hazard."""

changed

f_prime(x) = diff(f, x)

for j in range(0, max_iterate):

if (abs(f(x_old)) < epsilon):

return x_old

if (abs(f_prime(x_old)) < hazard): # new

raise RuntimeError(’f_prime(x) got too small! ’+

’Please try another initial condition.’)

new

ratio = f(x_old) / f_prime(x_old)

x_new = x_old - ratio

if (verbose==True):

print "iteration=", j

print "x_old=", x_old

print "f(x)=", f(x_old)

print "f’(x)=", f_prime(x_old)

print "ratio=", ratio

print "x_new=", x_new

print

x_old = N(x_new)

return x_old

Figure 9. Newton’s Method in Sage, Version 5

5.5. MORE CONCEPTS IN FLOW CONTROL 255

Error in lines 30-30

Traceback (most recent call last):

File "/projects/13762024-df4f-4043-8eca-8b21ee6f05e4/

.sagemathcloud/sage_server.py", line 671, in execute

exec compile(block+’\n’, ’’, ’single’) in namespace, locals

File "", line 1, in <module>

File "", line 14, in newton_method

RuntimeError: f_prime(x) got too small! Please try another

initial condition.

Figure 10. The Output Generated when the raise Com-
mand is Used.

subroutine. If we just return a value (such as 0) and print an error message,
we are not “notifying” the higher layers that something has gone wrong,
and the entire program might do very strange things as a result. However,
the raise command would halt computation, and prevent the larger pro-
gram from doing very unexpected things. Second, there is a try: except

construct in Python, which we cannot explore here. Using that construct,
you can actually respond and accommodate the error, and perhaps try the
subroutine again. Third, the raise command allows you to offer the user a
nice error message.

As you have no doubt seen, many error messages in Sage are extremely
unreadable. This has no doubt caused you some frustration at times. That’s
the reason why you should try to avoid causing that frustration in your users
and why you should make informative error messages—as well as hope that
later generations of Sage developers will do similarly.

5.5.2. The If-Then-Else Construct

In Section 5.2.5 on Page 229, we wrote code that evaluates a function on the
first few natural numbers, 0, 1, 2, 3, . . . , for a requested number of natural
numbers. However, that code will crash if we ever divide by zero. You can
try it with this function:

f(x) =
x2 − 4x+ 3

x2 − 5x+ 6

Now we will utilize a very powerful concept in computer programming,
called the “if-then-else” construct. This is like the if statements that we
used before, but now we are adding an else command. The idea is that
we’ll first check (with an if) whether or not the denominator is zero. If it is
zero, then we’ll print “dne” for “does not exist”—that would be the “then”
part. If it is not zero, then we want to print the value of the entire function
at that natural number—that would be the “else” part.

Consider the following code:

def rationalFunctionToSequence(num, denom, howmany):

256 5. PROGRAMMING IN SAGE AND PYTHON

"""This subroutine takes a function as the first input, and then

evaluates that function at the first ’howmany’ natural numbers.

For example, if howmany is 4, then the f is evaluated

at 0, 1, 2, 3. Any poles are reported as dne."""

for j in range(0, howmany):

if (denom(x=j) == 0):

print "dne",

else:

value = num(x=j) / denom(x=j)

print value,

Now we have two parameters for communicating the function to the
subroutine, because we need the numerator and denominator separately.
The third parameter tells us how many natural-number function evaluations
are requested. The second line is just a for loop to take us through the first
few natural numbers, namely 0, 1, 2, . . . , n− 2, n− 1. Next we’ll evaluate
the denominator at the point x = j, and see if it is zero—that’s the third
line. In the fourth line, only to be executed if the denominator is zero, we
print “dne.”

The fifth line is the else command which means that the sixth and
seventh lines, which are indented under the else and therefore subordinate
to it, will be executed only if the denominator is not equal to zero. We
compute the value of f(x) at x = j, which is merely the numerator divided
by the denominator (line six), and finally we print it in (line seven).

Now, let’s test our code, with the following lines:

f(x) = x^2 - 4*x + 3

g(x) = x^2 - 5*x + 6

rationalFunctionToSequence(f(x), g(x), 10)

We get the following output, and can be satisfied that the subroutine
works correctly:

1/2 0 dne dne 3/2 4/3 5/4 6/5 7/6 8/7

The else command is a time-saver but it also makes the code more
readable. The following code is equivalent, but more tedious to write and
to read:

def rationalFunctionToSequence(num, denom, howmany):

"""This subroutine takes a function as the first input, and then

evaluates that function at the first ’howmany’ natural numbers.

For example, if howmany is 4, then the f is evaluated

at 0, 1, 2, 3. Any poles are reported as dne."""

for j in range(0, howmany):

if (denom(x=j) == 0):

print "dne",

if (denom(x=j) != 0):

value = num(x=j) / denom(x=j)

print value,

5.5. MORE CONCEPTS IN FLOW CONTROL 257

Here, we’ve explicitly said that print "dne" is only to occur if the
denominator is zero. Similarly, the division of numerator and denominator,
storing it in value, and printing it, will only occur if the denominator is
not zero. Therefore, the else command is not strictly necessary, but it
does make things easier for the programmer. The advantages of having
else available are easier to appreciate when we handle complex if-then-else
statements inside each other. We won’t get to that in this Chapter, but
other books on Python would.

A historical note is that even though there is no “then” command in
Python, nor in C, C++, nor Java, the concept is still called “if-then-else.”
That’s because some very old programming languages, like BASIC and Pas-
cal, used the word “then” as a command. The nomenclature reflects that
historical memory.

5.5.3. Easy Challenge: Registrar’s End of Semester Run, Part 1

For this challenge, you’re going to write a small subroutine that will check
the GPA of a student and decide their status at the university. The name of
the subroutine should be decideStatus and there should be two parameters:
first, the student’s name, and second the student’s GPA.

Before any processing begins, if the students GPA is less than zero or
more than four, the subroutine will raise an exception. After that, if the
student’s GPA is less than 2, then they should be declared on academic
probation. On a single line, print their name followed by the words “is on
academic probation.” On the other hand, if the students GPA is 2 or higher,
then on a single line, print their name followed by “is okay.”

It is important that you only use a single line, because later (in Sec-
tion 5.7.9) we will make another subroutine that calls this subroutine, but
for many students.

5.5.4. A Harder Challenge: End of Semester Run, Part 2

This is a modification of the previous challenge. Recall that a GPA is valid
if and only if 0 ≤ g ≤ 4. For any valid GPA g, the status of the student
should be given according to the following rule:

4 ≥ g ≥ 3 Dean’s List
3 > g ≥ 2 Normal
2 > g ≥ 1 Academic Probation
1 > g ≥ 0 Academic Dismissal

Here is a hint: you might want to try three if-then-else constructions.
Namely, an if-then-else inside of the “then part,” and another inside of the
“else part,” of a huge if-then-else. It requires a lot of careful indentation.

258 5. PROGRAMMING IN SAGE AND PYTHON

5.6. While Loops versus For Loops

As it turns out, the for loop is the most common loop in mathematical
programming, but it has a close runner-up. The while loop is also very
important, and occurs frequently. A while loop will continue as long as
some logical test returns True; if ever the logical test returns False, then
the loop will stop.

There is nothing more to the story, as we’ve now described the only
difference between for loops versus while loops. Therefore, let’s explore an
example.

5.6.1. A Question about Factorials

Frequently when teaching about factorials, permutations, combinations, and
so forth, it is useful to try to select numbers of a particular size. For simplic-
ity, let’s restrict to factorials. Let’s imagine that I want to find the values
of n around which n! is approximately a billion, a trillion, or perhaps a
thousand.

I could do this with trial and error but that’s not very enjoyable. It
would be more convenient to have one subroutine which just provides me
with an answer. Specifically, we wish to find, given some y, the smallest
value of x such that x! ≥ y.

Since 0! = 1, we can start with x = 0, and we should count up until we
reach the first value of x such that x! ≥ y. Try the following code:

def first_factorial_greater_than(y):

""""This subroutine returns the lowest integer x such

that x! >= y."""

guess = 0

while (factorial(guess) < y):

guess = guess + 1

return guess

This code will start with a value for guess that is 0. It will keep
executing the command guess = guess + 1 while it remains true that
factorial(guess) < y evaluates True. However, the very moment that
factorial(guess) < y evaluates False, it will halt the loop and not incre-
ment guess. In plainer words, the very moment that factorial(guess) >=

y the loop stops and program flow will continue with the next line return

y.
We can test this with a few numbers and see that it works. For example,

first_factorial_greater_than(130)

returns 6 because 5! = 120 and 6! = 720.
You can also try checking with the following:

print first_factorial_greater_than(10^6)

print factorial(9)

5.6. WHILE LOOPS VERSUS FOR LOOPS 259

print factorial(10)

5.6.2. A Challenge: Finding the Next Prime Number

For this challenge, you’re going to reproduce one of the commands already
built into Sage. In Section 5.4.5 on Page 252, you were challenged to count
the number of primes p in the interval 1 ≤ p ≤ x, presumably with the use
of a for loop and the is prime command.

Here, we’d like to find the least prime greater than x. In plain English,
we’d like to find the next prime after x, though there is no reason to assume
x is prime. For example, the least prime greater than 13 is 17. The least
prime greater than 15 is also 17.

What is interesting about this challenge is that we clearly cannot use a
for loop because we have no idea how many integers we will have to check.
For example, the next prime after 113 is 127, a jump of 14 integers. The
next prime after 107 is 109, a jump of 2 integers. The next prime after
360,653 is 360,749 a jump of 96 integers.

For larger numbers, the situation is even more amusing. The next prime
after 1,693,182,318,746,371 is 1,693,182,318,747,503 a jump of 1132 integers.
In contrast, the next prime after that is 1,693,182,318,747,523, a jump of 20
integers.

Therefore, make a small subroutine that counts upward from a number
(the input) until it reaches a prime number. It should return the first prime
that it finds, which of course will greater than its input, since we only move
forwards and never backwards.

You can easily test your work in this challenge, as this command is
already built into Sage. The command is next prime. You can see how far
your skills have come, as you are now coding subroutines that are equivalent
to Sage commands.

For an extra challenge, write your code so that it never bothers to check
any even number greater than 2, because even numbers greater than two
obviously cannot be prime. If the input is odd, this is easy—you have to
therefore detect and respond to even inputs accordingly.

5.6.3. Newton’s Method with a While Loop

Now that we understand while loops, I have to confess that I have been a
bit strange by using a for loop in Newton’s Method. The application really
calls for a while loop. The general plan is to repeat the iterative process
until the the approximation meets the required standard by being less than
epsilon (in absolute value). However, we can have an “escape route” if the
maximum allowable iterations is exceeded.

The code is given in Figure 5.6.3. I have marked new lines with #

new as before. Note that I changed the default value of max iterate to
1000, to reflect the fact that this will rarely be the way that the subroutine

260 5. PROGRAMMING IN SAGE AND PYTHON

terminates. Normally it will terminate by having the approximation be less
than epsilon (in absolute value).

There is also the question of how to terminate the while loop after
max iterate iterations. As you can see, I use an if statement to detect the
condition, then print a warning to the user. Next, I use the break command
which we haven’t seen before. The break command will exit out of the
current loop, but resume program flow after the loop in the source code.
(In other words, it continues the program at the specific point where the
program would go once the loop had normally ended.) This is in contrast to
a return command, which will terminate both the loop and the subroutine.
It is a technicality worth mentioning that if you have several loops inside
each other, the break command applies to the innermost loop only. Here,
when we hit the break command, we will execute some print statements
when the optional parameter verbose is True, and then we return the final
answer.

5.6.4. The Impact of Repeated Roots

Last but not least, I’d like to show you a neat phenomenon in Newton’s
method. With the Version 6 of the above code typed in, define the following
two polynomials:

f(x) = (x-1)^5

g(x) = (x-1)*(x-10)*(x-20)*(x+10)*(x+20)

Next, try

newton_method(f(x), 3, verbose = True)

but you will see that the f ′(x) value gets to be too small, and Newton’s
method aborts. We can stop this automatic shut off by setting the hazard

optional parameter to be 10−9 instead of 10−4, which is the default. Now,
we type

newton_method(f(x), 3, verbose = True, hazard = 10^-9)

and we see that 22 iterations were required! In contrast

newton_method(f(x), 3, verbose = True, hazard = 10^-9)

provides an answer within a mere 4 iterations. Also, it is a higher quality
approximation, with g(xold) being −1.75 · · · × 10−11. In contrast, f(xold)
was 6.99 · · · × 10−10, considerably worse.

As you can see, f(x) has one root with multiplicity five. Meanwhile, g(x)
has five roots of multiplicity one. You can choose very different polynomials,
but a highly repeated root will indeed have slower convergence than a poly-
nomial of the same degree but no repeated roots. This is a theorem that is
often proved in a Numerical Analysis class, though not always in the first
semester of that subject. That proof is too difficult for here, but experiment
on polynomials with repeated roots, and you will see the phenomenon.

5.6. WHILE LOOPS VERSUS FOR LOOPS 261

def newton_method(f, x_old, max_iterate = 1000, # changed

verbose = False, epsilon = 10^(-9), hazard = 10^(-4)):

"""An implementation of Newton’s Method, to find a root

of f(x) given an initial guess for x. A default of 10

iterations will be carried out unless the optional

parameter max_iterate is set to something else. Set

verbose = True to see all the intermediate stages.

The algorithm will stop early if |f(x)| < epsilon. The

algorithm with raise an exception if |f’(x)|<hazard."""

f_prime(x) = diff(f, x)

iterations=0

while (abs(f(x_old)) >= epsilon): # new

iterations = iterations + 1 # new

if (iterations >= max_iterate): # new

print "Warning: Iteration Limit reached." # new

break # new

if (abs(f_prime(x_old)) < hazard):

raise RuntimeError(’f_prime(x) got too small! ’+

’Please try another initial condition.’)

ratio = f(x_old) / f_prime(x_old)

x_new = x_old - ratio

if (verbose==True):

print "iteration=", iterations # changed

print "x_old=", x_old

print "f(x)=", f(x_old)

print "f’(x)=", f_prime(x_old)

print "ratio=", ratio

print "x_new=", x_new

print

x_old = N(x_new)

now the loop has concluded. (# new)

if (verbose==True): # new

print iterations, # new

print " iterations were required." # new

print "f(answer) = ", # new

print f(x_old) # new

return x_old

Figure 11. Newton’s Method in Sage, Version 6

262 5. PROGRAMMING IN SAGE AND PYTHON

5.6.5. Factorization by Trial Division

We’re going to continue with our theme of trying to program small bits of
code that preform tasks similar to Sage capabilities. Here, we’re going to try
our hand at factoring, like the Sage factor command, but with an extremely
straightforward approach—we’ll just divide by prime numbers until we’ve
factored our target number.

The target number is initially the number that we want to factor. We
are going to divide our “target number” by successive primes, starting with
2. If a particular prime number divides the target, we will replace the target
with the quotient, print that prime as part of the factorization, and we will
not move to the next prime. If a particular prime number does not divide
the target, we will replace the current prime number with the next prime
number, as identified by Sage’s next prime command, but we will not print
that prime as part of the factorization. We will stop when the target number
is 1, without printing the 1.

One issue is how to decide if one number is divisible by another. Mathe-
maticians usually use a trick called “modular arithmetic” but that’s inconve-
nient here, because not all of my readers will know what modular arithmetic
is. If you happen to know the modular arithmetic, then you know that x is
divisible by y if and only if x mod y equals zero. If you do not happen to
know the modular arithmetic, then just take my word that

if ((target % current_prime) == 0):

as equivalent to the nonexistent but desired if ("a is divisible by b"):.

The code for trialDivisionFactor might be a bit confusing. It is a
mathematically non-trivial subroutine, and therefore it is worth a bit of
wrestling with.

def trialDivisionFactor(x):

"""Using trial division, this subroutine will print the prime

factorization of the input x. The fact that x is an integer,

greater than 1 is assumed."""

print "Computing the factorization of", x, ":",

target = x

current_prime = 2

while (target>1):

if ((target % current_prime) == 0):

target is divisible by the current prime.

print current_prime,

target = target / current_prime

else:

target is not divisible by the current prime.

current_prime = next_prime(current_prime)

print

5.6. WHILE LOOPS VERSUS FOR LOOPS 263

That print statement at the end of the subroutine will allow us to try
multiple test cases at once. Let’s try testing with

trialDivisionFactor(25)

trialDivisionFactor(26)

trialDivisionFactor(27)

We get the excellent output below:

Computing the factorization of 25 : 5 5

Computing the factorization of 26 : 2 13

Computing the factorization of 27 : 3 3 3

You can try that three-line test again, after removing the lonely print

statement at the end of the subroutine. The funny output obtained will
demonstrate why we need that print statement. A better test would be to
check a bunch of consecutive integers, as below.

for y in range(19, 50):

trialDivisionFactor(y)

If you try that check, you’ll see that our code is working well.
However, the subroutine does not work well with a negative input. We’ll

have to fix that. For example, nothing gets printed if you try

trialDivisionFactor(-10)

5.6.6. A Mini-Challenge: Trial Division, Stopping Early

Our subroutine is very inefficient in that if you ask it about 1,000,003 (which
happens to be prime) it has to check all the primes starting with 2, 3, 5, 7,
. . . , 999983, 1000003, only finishing when it reaches 1000003.

The following lemma will help us. If a positive integer n is not divisible
by any of the primes less than or equal to

√
n, then n must be prime.

Proof: Suppose n is not prime. Then consider the prime factorization
of n, namely

n = (p1)(p2)(p3) · · · (p`)

where ` ≥ 2 since n is not prime. We know that there does not exist a prime
dividing n that is less than or equal to

√
n, so we have

p1 >
√
n

p2 >
√
n

p3 >
√
n

...
...

...

p` >
√
n

264 5. PROGRAMMING IN SAGE AND PYTHON

Combining all these (which is only allowed because everything is posi-
tive) yields:

(p1)(p2)(p3) · · · (p`) > (
√
n)`

(p1)(p2)(p3) · · · (p`) > n`/2

n > n`/2

Since ` ≥ 2 then `/2 ≥ 1 and n`/2 > n1. We now have

n > n`/2 and n`/2 > n therefore n > n

which is clearly a contradiction. Therefore, our supposition was false, and
n is surely prime. �

Therefore, we should check if current prime is greater than the square
root of target. If so, then we can freely halt the while loop because target
is prime.

Your challenge is to modify the existing code from above to make this
shortcut happen. A good test case for your work might be

x = 1, 000, 730, 021

While you’re upgrading this subroutine, we should fix the inability to
factor negative numbers. Since we know that we can factor positive integers,
an easy solution presents itself. Given some negative integer x, we should
just factor instead −x, which will clearly be positive. We should put “−1”
in front of the factorization to reflect the fact that the target number is
negative. Lastly, if someone asks for the factorization of 0, then we should
raise an exception. For example, if you use the built-in command in Sage,
and ask factor(0), then you’ll get a long error message, followed by

ArithmeticError: Prime factorization of 0 not defined.

5.6.7. A Challenge: An Upgraded Cash Register

Now you’re going to upgrade the code you wrote in the challenge of Sec-
tion 5.2.2, simulating a cash register. Instead of telling the user that their
change is $ 4.75, you should output that the change is four dollar bills, and
three quarters. Software of this type is required in the kind of cash registers
where the coins just pop out of the side of the register into a tray for the
customer to take. These registers, while expensive, have become popular
in stores in the last decade because many people who would otherwise be
working the cash registers are unable (!) to make change correctly.

It is a bit confusing for some to figure out how to do this while dispensing
the fewest coins possible. That’s a worthy goal, so that the machine does
not have to be refilled with coins very frequently. Also, a customer would be
irritated if they received 475 pennies back. Here’s an abbreviated example:

If you know you have to return $3.90, just as an example, you should
first give as many dollar bills as you can (in this case 3 dollar bills, as $4

5.7. HOW ARRAYS AND LISTS WORK 265

is too much). Now you have to give 90 cents, and you must give as many
quarters as you can (in this case, 3 quarters, because that’s 75 cents which
is okay, but $ 1.00 is too much). Okay, now 15 cents remain, so you should
give as many dimes as you can (in this case 1, because $ 0.20 is too much).
Lastly, 5 cents is left, and that’s clearly one nickel. An easy way to code
this is with five while loops (one for dollar bills, one for quarters, one for
dimes, one for nickels and one for pennies) or with clever usage of the “floor”
command in Sage.

5.7. How Arrays and Lists Work

We’ve had several encounters with the Python list concept throughout this
book. The list structure in Python replaces older concepts like arrays
and linked lists in other programming languages—but if you’ve never pro-
grammed before, don’t worry about what that means for now. Here, we will
learn some tricks about how to operate with lists.

Incidentally, we’ll also get some exposure to how plot actually generates
images. Special thanks to Brian Knaeble for encouraging me to include this
subtopic, as 100-level students are often very curious about how graphing
calculators and Sage actually produce graphs.

5.7.1. Lists of Points and Plotting

The small snippet of code is going to explore how computers generate plots.
We’re going to look at a simple function f(x) = x3−x, and write a subroutine
that will graph it on the interval −3/2 < x < 3/2.

Here is the code that we will analyze.

f(x) = x^3 - x

list_of_points = []

verbose = False

for k in range(-150, 150):

x = k*0.01

y = f(x)

new_point = (x,y)

if (verbose==True):

print new_point

list_of_points = list_of_points + [new_point]

scatter_plot(list_of_points)

First, we define our function and second, we start with an empty list of
points. (Those are our first two lines). Just as any sequence of numbers,
separated by commas, and enclosed in square brackets, is a list—the empty
list is simply a pair of square brackets with nothing between them. Then

266 5. PROGRAMMING IN SAGE AND PYTHON

we quickly define a variable verbose which will be convenient later. Next
follows the for loop which does most of the work.

For every iteration through the for loop, we compute an x-coordinate.
While k will move from −150 to 150, each x-coordinate is to be very close
together. In fact, we multiply by 0.01, forcing x to move from −1.5 to 1.5
in increments of 0.01. The y-coordinate is just f(x). Then, we construct a
point, which is an ordered pair, and it is just “x comma y.” It might be
interesting for you to set verbose to True instead of False, to actually see
that list. Next, we update our list of points by adding together the old list,
and a list consisting only of the new point. Finally, when all k values are
processed and the for loop has completed, we make a scatter plot.

The line

list_of_points = list_of_points + [new_point]

could use more explaining. In this line, we are telling Sage that the new list
of points should become the old list of points, plus also the new point. The
plus sign between two lists is going to result in a concatenation (or merger)
of the two lists. However, unlike set theory, order matters and duplicate
entries can occur. We’ll explore the differences between sets and Python
lists momentarily. The fact that we had to write the name of the list twice
is slightly inconvenient because the name of this list is somewhat long. To
alleviate this, Python actually has a shortcut

list_of_points.append(new_point)

that will stick a single element at the end of the given list.
Now the natural question would be “is this how Sage does it?” What

happened here is the basic algorithm that is almost always used in tools like
graphing calculators or older mathematical software. Sage actually takes
a few points in tiny equally spaced intervals along the x-axis, instead of
just one point. Also, those representative points within the interval are not
equally spaced, but are chosen at random. We explained why on Page 3.2.
Lastly, Sage will occasionally detect that more points are needed in certain
subintervals because the function is “going wild there” and will evaluate
extra points in those subintervals.

5.7.2. A Challenge: Making the Plot Command

Let’s modify the code that we just wrote to make it more general. First,
we should make it a proper subroutine with def and a name. Second, we
should take some inputs: the function to be graphed, followed by the start
point and the end point of the interval. Third, we should allow an optional
parameter, which is how many points the user wants over the entire graphed
interval. I think that 100 is a good default value for that optional parameter.

The tricky part is to make a formula, that given (1) the number of points
desired, (2) the start of the interval, (3) the end of the interval, and (4) the
loop’s iterating variable, that will provide the x coordinate. That’s the main
difficulty of this challenge.

5.7. HOW ARRAYS AND LISTS WORK 267

5.7.3. Operations on Lists

As we saw earlier, adding two lists concatenates them.

a = [2, 3, 4]

b = [1, 3]

print a + b

print b + a

We obtain the following output:

[2, 3, 4, 1, 3]

[1, 3, 2, 3, 4]

Here, we can really see the difference between Python lists and sets. First
of all, in a mathematical set, no entry appears more than once. However,
here we see that entries can appear more than once. Also, in mathematical
sets, order does not matter. In Python, order matters.

Sometimes it is good to know the length of a Python list. For that,
we use the len command. We actually saw this briefly on Page 150 when
talking about determining how many divisors a number might have.

print len(a)

print len(b)

The in command is used with Python lists and if statements to make
behavior dependent upon membership in a list. As you can see, 2 is a part
of our list “a” but not a part of our list “b.” Accordingly, the following lines
will return True and False respectively, as one would expect.

print 2 in a

print 2 in b

To access specific members of a list, we use the square brackets. Com-
puter scientists count from 0 and not from 1, for very hard to explain but
very good reasons having to do with memory locations. Therefore, the first
entry is entry 0, the second entry is entry 1, and third entry is entry 2, and
so forth. Interestingly, there are times when you want the last entry, or the
second to last entry, or the third to last entry. While I don’t know of other
programming languages that do this (there might be some), Python allows
you to get directly at these by asking for the “-1”th entry in the list, which
is the last, or the “-2”th entry in the list, which is the second-to-last. Try
the code below to demonstrate this feature.

C = [1, 2, 3, 4, 5, 6]

print C[0]

print C[1]

print C[2]

print

print C[-1]

print C[-2]

print C[-3]

268 5. PROGRAMMING IN SAGE AND PYTHON

We can also remove items from lists. The remove command does that.

C.remove(5)

print C

At times in mathematical programming, we might want to add up a list.
The sum command will total up a list for you. Much less commonly used,
but occasionally useful, is the prod command, which will multiply all the
members of a list together. The code below correctly computes a sum of 28
and a product of 5040 for the first seven positive integers.

E = [1, 2, 3, 4, 5, 6, 7]

print "Sum: ", sum(E)

print "Prod: ", prod(E)

There is also a shuffle command in Python, which is great for random-
izing a list. It can be useful in making games, or in scientific experiments
where randomization is important for statistical reasons. I use it to make
lists so that I can call on students in random order and make sure I do not
call upon someone twice before I have called upon every student once.

roster = ["Alice", "Bob", "Charlie", "Diane", "Edward",

"Francis", "Gregory", "Harriet"]

print roster

shuffle(roster)

print roster

shuffle(roster)

print roster

shuffle(roster)

print roster

shuffle(roster)

That code produced, for me, the following output, but you might get
something completely different. (It is supposed to be pseudorandom output,
after all.)

[’Alice’, ’Bob’, ’Charlie’, ’Diane’, ’Edward’, ’Francis’, ’Gregory’, ’Harriet’]

[’Diane’, ’Bob’, ’Francis’, ’Alice’, ’Gregory’, ’Charlie’, ’Harriet’, ’Edward’]

[’Charlie’, ’Diane’, ’Gregory’, ’Bob’, ’Harriet’, ’Francis’, ’Edward’, ’Alice’]

[’Francis’, ’Edward’, ’Harriet’, ’Gregory’, ’Bob’, ’Diane’, ’Alice’, ’Charlie’]

There are many commands to help you work with lists in Python.
A great reference can be found at the URL below. It is part of a gen-
eral Python-teaching website that is intended for experienced programmers.
However, there’s no harm in just scrolling through a webpage to see how
many list-related commands there are in Python.

http://www.diveintopython.net/native_data_types/lists.html

I recommend some easier tutorials as “Further Reading” on Page 274,
that are more suitable for beginners.

5.7. HOW ARRAYS AND LISTS WORK 269

5.7.4. Looping through an Array

In this subsection we’re going to explore how one can generate reports from
arrays. Often I have some part of my program computing something, an-
other part of the program generates statistics from that data, and finally
a third part displays it in a useful format. Here, we’ll simulate a small
piece of a bit of management software. We will be writing a subroutine that
generates a revenue report based on a list of names and an array of revenues.

We will take as input two lists, one of names and another of revenues.
First, we have to check to make sure that they are the same length—and if
not, we will raise an exception. Then we will step through all the names,
with a for loop. We will print one line, giving the name and the matching
revenue. Here is the code:

def generateRevenueReport(names, revenues):

""""This subroutine takes in two lists, one of names, and another

of revenues. If the lists are of unequal length, an exception is

raised. Then a revenue report is generated, with each name and

the revenue brought in, printed on one line per manager."""

if (len(names) != len(revenues)):

raise RuntimeError(’The names list and the revenue list were’

+’ not the same length! Please try again.’)

for i in range(0, len(names)):

print names[i],

print " brought in ",

print revenues[i]

Below is how we will test our code.

names = ["Ned", "Ed", "Ted", "Jed", "Fred"]

revenues = [200*1000, 300*1000, 400*1000, 100*1000, 600*1000]

generateRevenueReport(names, revenues)

You should receive the following as output:

Ned brought in 200000

Ed brought in 300000

Ted brought in 400000

Jed brought in 100000

Fred brought in 600000

You’re might be wondering why we checked the lengths of the lists and
why we raise an exception if they are of different length. Let’s say that I
have a list with 5 items in it. When I ask for names[0] or names[1], the
number in the square brackets is called an index (plural: indices). Because I
have five items, the valid list indices are 0, 1, 2, 3, 4. Also, because Python
allows negative indices, I can ask for -1, -2, -3, -4, and -5. The natural
numbers count from first to last, and the negative integers count from last
to first. What is forbidden is to ask for indices that are greater than or

270 5. PROGRAMMING IN SAGE AND PYTHON

equal to 5. If the length of one list is different from the length of another
list, then the last index will ask for something which does not exist in the
shorter list. This will generate an exception (even if we didn’t use raise),
and would halt the program.

To test the above phenomenon, add a name to the end of the names list,
and call the subroutine again. The subroutine would raise an exception
and the program stops. Now backspace over the if statement that checks the
lengths, and the raise statement after it. See how the subroutine behaves
now, when you tack on a spurious name. An error message will be generated
either way. However, using an if followed by a raise, you can make the
error message human readable.

Mini-Challenge: Compute the Total Revenue

I’d like to give you a mini-challenge now. Can you change the subroutine
we just wrote so that it also outputs the total revenue (at the bottom of the
revenue report) when finished?

You could choose to do this with an accumulator (see Section 5.1.4 on
Page 219) or you could choose to do this using the sum command for lists
(see Section 5.7.3 on Page 268). The choice is yours!

5.7.5. A Challenge: Company Profit Report

This challenge will have you write a subroutine where the three inputs are
lists. The first is a list of names, followed by a list of revenues, and then a
list of costs. These represent the managers of each division in a corporation,
as well as their division’s income and outgo. Your subroutine will generate
a quarterly profit report, which is a list of names followed by the profit of
each division. However, if the lists which are inputted are not of equal size,
raise an exception.

Finally, don’t forget the bottom line: the total profit should be displayed
as the last line of the profit report. (That’s the origin of the expression “How
will this impact their bottom line?”)

5.7.6. Averaging Some Numbers

In this subsection, we’ll write a subroutine to average some grades, but we
want to drop the lowest grade. Because this practice is not common outside
the USA, I will take a moment to explain the concept.

For our non-USA readers, often college students in the USA are exam-
ined with a short written test called a “quiz” every week or every two weeks,
instead of just one exam at the end of the semester (or end of the year) as is
standard in the UK. In fact, when I teach, there might be 12–14 quizzes, a
long final exam, and a semi-long exam in the middle of the semester called
a “midterm exam.” If you think about it, this is a huge difference. If a
student takes Calculus II and Calculus III with me, they will end up taking

5.7. HOW ARRAYS AND LISTS WORK 271

about 32 different exam-like-events during the academic year. In the clas-
sical British model, they might take only two exams, or perhaps only one5

exam.
In any case, with 13 quizzes, some faculty will “drop the lowest.” This is

a way of accommodating the fact that someone might be having a very bad
day, or perhaps a hangover. The lowest grade gets struck from the record,
and the remaining 12 will be averaged. For a compact example, imagine a
class with six quizzes, where the scores were 100, 80, 90, 70, 80, and 90. In
this case, the 70 is struck and the average is

100 + 80 + 90 + 80 + 90

5
=

440

5
= 88

which is a B+. That is significantly better than 85.4285 · · · , the average
without dropping, which is a B. I’ve listed the code, below:

def averageGrades(grades):

"""This subroutine takes a list of grades between 0 and 100,

inclusive, as an input. Then it will compute the average of the

grades, after dropping the lowest score."""

total = 0

lowest_seen = 101

for g in grades:

if ((g<0) or (g>100)):

raise RuntimeError(’Invalid grade in list!’)

total = total + g

if (g < lowest_seen):

lowest_seen = g

numerator = total - lowest_seen

denominator = len(grades) - 1

return N(numerator/denominator)

First, you might be surprised at the line:

for g in grades:

which is a different sort of syntax for the for loop than we’ve seen so far.
Here, we are saying that g should take the value of each of the members of
the list grades exactly once.

As you can see, we raise an exception if a grade is less than zero or over
100%. We’ve used the keyword or here, which means that the if statement

5It should be noted that some UK universities have adopted the American model.
Furthermore, I know that German universities often have weekly written problem sessions
in their mathematics classes too, which are basically the same concept as our weekly or
biweekly quizzes.

272 5. PROGRAMMING IN SAGE AND PYTHON

will trigger if either g < 0 or if g > 100. In other situations, you can use the
and command similarly.

We also have an accumulator, called total. The lowest seen needs a
bit of explanation. If we are in the middle of a loop, and see a grade g lower
than lowest seen, then we need to update lowest seen to be this “very
low” value of g. When the loop is finished, then surely lowest seen is the
lowest g value that we ever saw.

The only thing left is to choose a value for the start of the subroutine.
I chose 101, because no grades will be over 100. Alternatively, if a grade
over 100 is found, the subroutine will raise an exception. I am always
guaranteed to find a grade in the list such that the grade is lower than 101.
This way, lowest seen will always be one of the grades in the list—and in
fact, it will be the lowest.

You can test the above subroutine with the following output.

averageGrades([100, 80, 90, 70, 80, 90])

We get the score of 88 as we expected.

5.7.7. Mini-Challenge: Average both With and Without Dropping

A fun modification to the previous subroutine would be a nice challenge for
you. Add an optional parameter called merciful. The lowest quiz should
be dropped if merciful is True, but not dropped if merciful is False. The
default should be False.

5.7.8. Mini-Challenge: Doubling Counting the Highest Quiz

Another modification to the previous mini-challenge would be to have the
merciful professors count the highest quiz as double, rather than drop the
lowest quiz. Try that.

5.7.9. A Challenge: The Registrar’s Run, Part Three

Here is an excellent example of how small subroutines get built up into
larger subroutines, and eventually programs. Consider the subroutines that
you wrote in Section 5.5.3 and Section 5.5.4. Now you’re asked to write a
subroutine that will take a list of student names, and a list of GPAs. If the
lists are of unequal size, then raise an exception. If the lists are of equal
size, call your previously written subroutine for each student in the list. A
report should be generated that shows the student’s name, their GPA, and
lastly, their fate. You might have to modify your old subroutine slightly to
accommodate this.

5.7.10. A Utility: Returning Only Real, Rational, or Integer Roots

Earlier, in Section 1.8 on Page 37, we learned how to use the solve command
to find the roots of a polynomial. Naturally, this will include roots that are

5.7. HOW ARRAYS AND LISTS WORK 273

complex numbers. However, sometimes you only want the real roots, the
rational roots, or the integer roots.

You probably have seen notation that looks like C, R, Q, and Z, to
represent the complex numbers, the real numbers, the rational numbers,
and the integers (respectively). To represent these, Sage has the notation
CC, RR, QQ, and ZZ. We can use the in command as if these were Python
lists, even though they are infinite6 sets.

For example, if we are interested in

f(x) = x9 − 10x8 + 40x7 − 100x6 + 203x5 − 290x4 + 260x3 − 200x2 + 96x

we could type

f(x) = x^9-10*x^8+40*x^7-100*x^6+203*x^5-290*x^4+260*x^3-200*x^2+96*x

answers = solve(f(x) == 0, x)

for x in answers:

print x

That would print all nine complex roots, namely

{0, 1, 2, 3, 4, −2i, −i, i, 2i}
but maybe we don’t want to see the imaginary roots. We can try the fol-
lowing instead

f(x) = x^9-10*x^8+40*x^7-100*x^6+203*x^5-290*x^4+260*x^3-200*x^2+96*x

answers = solve(f(x) == 0, x)

for x in answers:

if (x.rhs() in RR):

print x

which will restrict us to the real roots only, excluding the four purely imag-
inary roots.

By the way, rhs() stands for “right hand side.” The left hand side would
be accessible by lhs() but would be useless in this case, since it would just
be x.

Now change f(x) into g(x) in the above code, where

g(x) = 3x7 − 2x6 − 15x5 + 10x4 + 6x3 − 4x2 + 24x− 16

taking care to remember to make the change twice—once in the definition
of the polynomial and once in the solve command. If we keep RR we see
only five roots. However, if we change the RR to CC then we see all seven
roots, namely {

−2, −
√

2,
2

3
,
√

2, 2, −i, i
}

6In fact, if you know about the different sizes of infinity, R and C are the “larger
kind” of infinity or “uncountably infinite,” sometimes called ℵ1. On the other hand, Q
and Z are the “smaller kind” of infinity or “countably infinite,” sometimes called ℵ0. The
symbol ℵ is the Hebrew letter called “aleph.”

274 5. PROGRAMMING IN SAGE AND PYTHON

Figure 12. One of the Roots of h(x) from Section 5.7.10

Next, we could use QQ and we would see the three rational roots, namely
{−2, 2/3, 2}. Finally, if we use ZZ then we get the two integer roots, namely
{−2, 2}.

We could replace g(x) with

h(x) = x4 − x3 − x2 − x− 1

and try the above code using CC. We get four explicit algebraic roots (with
a disturbingly complicated format). One of those roots is given in Figure 12
and the others are similar in structure. If we change the CC to RR, then we
discover that two of those roots are real, which means that the other two
must be complex. Finally, if we change the RR to QQ, we observe that none
of those roots are rational.

5.8. Where Do You Go from Here?

I hope this chapter has been useful and perhaps even enjoyable to you.
Learning to program can open up whole new worlds of opportunity in re-
search, academia, or industry. It can also sharply increase your salary.

5.8.1. Further Resources on Python Programming

Here are some resources that can allow you to grow further in your program-
ming skills.

• A great website for people who are just starting to learn to program,
and want to make that journey using Python, has been written by
Alan Gauld, at the URL below. The website is a bit out of date
(on July 4th, 2014 it stated that the last update was May 27th,
2007) but I do not see why that should matter.

http://www.freenetpages.co.uk/hp/alan.gauld/

• Another great ebook for learning how to program, with Python as
the language is How to Think Like a Computer Scientist: Python
Version by Jeffrey Elkner, Allen B. Downey, and Chris Meyers.

http://openbookproject.net/thinkcs/python/english2e/

• A highly recommended wikibook on Python for those who do not
know how to program can be found at

http://en.wikibooks.org/wiki/Non-Programmer%27s_Tutorial_for_Python

• (I’m not in a position to judge between those three first resources.)
• A very interesting website by David Sklar and Bruce Cohen is “Just

Enough Python for Numerical Analysis.” This large website or

5.8. WHERE DO YOU GO FROM HERE? 275

small eBook is not meant to teach Python via Sage. Instead, it is
focused on working with Python directly. The examples are more
mathematical than the first three books above, however.

http://www.tetrahedra.net/m400/index.html

• Some resources at an intermediate difficulty level are available on
the official Python webpage.

https://www.python.org/about/gettingstarted/

• By Mike Pilgrim, Dive into Python!, is available as an ebook, a
website, and a physical printed book. However, it is meant for expe-
rienced programmers, who know other languages, but not Python.

http://www.diveintopython.net/

5.8.2. What Has Been Left Out?

Depending on the university, we have covered roughly half of what is nor-
mally taught in a single-semester Computer Science I. What follows is a
summary of what would be taught during the second half, for those of you
who are curious.

Variable Data Types: Data in computer programming can come
in various forms. Integers, floating-point numbers (which are ap-
proximations to real numbers) and strings (messages in quotes) are
the most common. In most programming languages, you have to
declare your variables, and name their data type. Variable declara-
tions are not difficult or confusing, but they are important because
your program won’t run without them in those languages. There
can be some subtle issues about choosing the right data type.

Logical Operators: We saw the use of or in Section 5.7.6 but a
typical course would offer a few more challenging situations where
the clever use of or as well as and becomes important.

Catching Exceptions that are Raised: When an exception is gen-
erated by the raise command, it is possible for a subroutine calling
the offensive subroutine to remedy the situation. The program is
not stopped, but instead special code is executed.

Nested If/Then/Else Statements: The if-then-else constructor is
a great way of handling two possibilities. For three or four possi-
bilities, one can chain these together within an “else if” construct.
In Python, the “elif” command is an abbreviation for “else if.”

Handling Case/Switch Statements: For situations where there
can be a dozen or more possibilities, a long stream of if-then-elif-
elif-elif-else commands would be very confusing to read and debug.
Most computer languages have a way handling separate “cases”
and this can be useful to know about.

Scope: The brief discussion (on Page 228) of “local variables” versus
“global variables” is actually a tiny taste of a moderately large issue

276 5. PROGRAMMING IN SAGE AND PYTHON

called “scope.” Understanding how scope works can be important
in debugging difficult computer programs.

Recursion: In both mathematics and in computer science, recur-
sion is when a function or subroutine calls itself. For example,
n! = (n)(n − 1)!, or xn = (x)(xn−1). This is not unlike a proof
by induction. The examples that I’ve given here are very simple,
but there are other, more sophisticated, examples which can be
mathematically rather powerful.

Working with Strings: We worked with numerical data a great
deal throughout this chapter. Likewise, one can work on string
data (messages) as well. You can search strings, make substitu-
tions, format them nicely, and do all sorts of interesting tasks. This
is how word-processors work.

Assertions: These are a great way to debug some code that is not
doing exactly what it should. An assertion is a logical statement,
something like what you’d give to an if statement, but it is one
that you’re relatively sure should be true whenever the particu-
lar assert command is executed. For example, assert (x>3). If
it turns out that the statement is false, the program immediately
stops entirely and you are notified that the assertion has failed.
This is a great way to find situations where you assumed that some-
thing would always be true, but that assumption is not always true
in practice.

Other Debugging Techniques: Learning to debug programs is the
most vital task of all for a programmer. This consumes the vast ma-
jority of development time in practice. Most programmers develop
this skill slowly over time, but it can be an enjoyable challenge.
In fact, some fun exam questions can be to present a student with
a task, and some code that almost carries out that task, but not
exactly. The student must identify the bug and identify how to
modify the code in order for it to operate correctly.

Playing Interpreter/Compiler: Another great exercise is for the
student to be given code, and to be asked “what does this do?”
The student must pretend to be a computer and walk through the
code following the flow of control. This is also a great way to learn
new and complicated algorithms.

Simulations: Generally, a simulation models some complicated engi-
neering, physical, chemical, biological, or even sociological phenom-
enon. How can such a complex entity be modeled on a computer?
The idea is to chop the circumstance up into many (perhaps a mil-
lion) tiny slices of time. Each time-slice can then be modeled with
a not-terribly-accurate model, such as a collection of linear func-
tions. Because each time-slice is small, and there are so many of
them, the simulation can still produce a high-fidelity output. This
is basically the concept of an integral applied to computer science.

5.8. WHERE DO YOU GO FROM HERE? 277

Many intractable situations can be approached this way. The art
of simulation is the easiest and yet most useful idea on this list.

Note: If a system is divided up into tiny regions of space instead of
time, this is called “The Finite Element Method” and is the single
“killer technique” in use today for difficult engineering situations.
Many technological achievements of the last two decades have only
been possible because of “The Finite Element Method.” Sadly,
this is almost always taught only to graduate students, and not to
undergraduates, and I have no idea why.

Object-Oriented Programming: It is difficult to describe object-
oriented programming in a few words. However, I will take a stab
at it. At this point, you know what data is and you know what
subroutines are. A collection of subroutines (called “methods”) and
variables containing data (called “fields”) get bundled together to
form a “class.” For example, in a registrar’s system there might
be a class called “StudentClass” with variables for the name, the
GPA, and the student-id number. Then, there would be many
StudentClass objects, one for each student in the university. Since
the data and the code are bundled together, you can do many
different tasks efficiently that would otherwise be more difficult
and tedious.

Naturally, for universities that use trimesters or quarters, the breakdown
would be somewhat different.

More important than any of these, in an actual computer science class,
you would have been given a larger battery of examples to study, and exer-
cises to program. Both of these are phenomenally valuable and an important
part of a programmer’s development.

Chapter 6

Building Interactive
Webpages with Sage

In this chapter, we’re going to learn how to construct an interactive webpage,
sometimes called an “interact” or an “app,” that can be posted to the web.
Unlike other uses of Sage, this particular feature is quite powerful for a simple
reason: anyone with access to the internet can find your interactive webpage.
Without any knowledge of Sage, or even much knowledge of mathematics,
they can move some sliders around and see how a graph changes, or watch
some other sort of mathematical concept unfold. Since many students are
visual learners, this concept of an interactive webpage can be of phenomenal
assistance to those who would otherwise be struggling to learn some chunk
of mathematics.

For example, students in low-level classes (at the university or even high
schools and middle schools) can be given the URL, and students can begin
using the interactive webpage with very little intervention of the teacher.
No experience with Sage or any other computer algebra software is needed.
In fact, most students will have no idea that Sage was ever involved at all.

Personally, I had been involved with Sage for 5 years and 10 months
before I learned how to make interacts over the 2012–2013 winter break.
When I finally did, I was amazed at how easy it is to actually do this. Had I
realized earlier how easy it is to make interactive webpages, I would certainly
have begun many years previously.

Our Examples

This chapter will make reference to five diverse but elementary mathematical
examples:

Tangent Line: This is our primary example. I will build this inter-
act up slowly from scratch as we go through the main body of the
chapter. The goal is to draw a moving tangent line to a simple
second-degree polynomial. I will highlight how I built this applet
by using my six-stage process.

279

280 6. BUILDING INTERACTIVE WEBPAGES WITH SAGE

Sine Wave: On the other hand, this example is my primary chal-
lenge to you. After we’re done exploring the tangent-line interact,
I’ll invite you to do make this interact as a challenge to yourself. In
case you get stuck, I’ve provided my own code—for each stage—so
that you can refer to it.

Optimal Aquarium: Back in Section 5.2.3 on Page 226, we devel-
oped a function that will compute the cost of an aquarium based
upon its dimensions. I thought it might be neat to provide code
that grows that function into an interactive webpage. This is a
relatively simple process, as it turns out.

Polynomial Grapher: This is a very quick applet meant to show
you how to make pull-down menus or check boxes for your interacts.
It’s really quick straight-forward. You have a pull-down menu with
a choice of three polynomials, and you can indicate if you’d like
gridlines in your graph (or not) by using a checkbox.

Definite Integral: Previous to making the sine wave interact, I had
thought of this as a good task to challenge the reader—the role
now taken by the “Sine Wave” interact. As it turns out, there are
some technicalities here, and it turns out that this task is a bit
harder than one might first guess. I leave it as a challenge for the
particularly motivated reader.

Where the Files can be Found:

The files for these five large examples can be found on my webpage. Go to
http://www.gregorybard.com/ click on “Sage Stuff” and then scroll down
a bit. There is a zip file there, and one directory for each of those five
interacts.

6.1. The Six-Stage Process for Building Interacts

The following multi-stage process is how I proceed to make the interacts,
and this is how our explanation will be organized. In particular, we will
watch how the “Tangent Line” interact was developed through each of these
stages in succession.

Stage 0: Concept development—take time to actually nail down pre-
cisely what you want the interact to do. Think of this as not only
a layout, but a behavior model. (If I click here, this happens; if I
click there, this other thing happens, et cetera. . .)

Stage 1: Design a function in Sage (using def) that represents one
round, cycle, or phase of the interact.

Stage 2: Polish this function until it is just right, with all the input
and output just as you want it to be, including colors and so forth.

Stage 3: Convert this function into an interact function within Sage
Cloud, using the “@interact” and “slider” commands. We will

6.2. THE TANGENT-LINE INTERACT 281

describe this process in full and it really is much easier than it
sounds. The slider command does all the work.

Stage 4: Insert this interactive function into a web-page template. I
have a template that1 I have been using for a long time, and you
can simply cut-and-paste your code into that one.

Stage 5: Flesh-out the webpage like any other webpage, adding some
paragraphs about the mathematics, some instructions, and perhaps
some motivation. You can edit this webpage like any other. Finally,
upload this new webpage to your website, as you would do with any
other webpage whatsoever.

The Prerequisites of Interact Building:

In writing this chapter, I have tried to aim at the broadest audience possible.
Basically, there are four ingredients necessary in your background to enable
you to be able to read this chapter.

(1) This chapter assumes a very basic knowledge of HTML. Only a
minimal familiarity with that language, sufficient to allow the user
to make their own (ordinary, non-interactive) webpages is required.

(2) It is necessary to have some background with Sage in general. For
example, functionality with the contents of the majority of Chap-
ter 1 of this book.

(3) Moreover, we will be programming in Sage via Python, and so
it would be useful to have read Chapter 5 as well. However, we
will only be using our own def functions and also some flow-of-
control constructions, and so a cursory understanding of Ch. 5 will
be sufficient (e.g., perhaps 5.1 and 5.2). Furthermore, it should be
noted that if the reader has good experience in any programming
language whatsoever (e.g. C, C++, Java, Perl, Fortran, . . .), then
they will be able to read the Python code and figure out what’s
going on without any prior knowledge of either Python or Ch. 5.

(4) Finally, the reader should be at least somewhat familiar with the
Sage Cloud interface.

6.2. The Tangent-Line Interact

Now we will follow the “Tangent-Line” interact as I had built it through
this six stage process.

Stage 0: Concept Development

Before actually coding anything, I try to define precisely what I want the
interact to do. Generally, I have three things in mind.

1Provided to me by Prof. Jason Grout.

282 6. BUILDING INTERACTIVE WEBPAGES WITH SAGE

First, I want to find “the best” example possible for communicating the
mathematical idea—it should not be too complex but it also should not
be too simple. In this case, we want to draw a tangent line and show an
early calculus student (perhaps less than three weeks into the course) what
a tangent line looks like. Therefore, it is pedagogically useful to choose the
drawn function to be something extremely simple—like a polynomial. I’ve
chosen the function f(x) = x3 − x.

Second, I try to focus on what the user can change, and what the user
should not be permitted to change. These will become the sliders in the
interact. The user should be able to change the x-coordinate of the point
where the tangent line is drawn, but not the y-coordinate, which should be
computed by the interact. In this way, the user will never choose a point
that is not on the curve y = x3 − x.

Third, I often like to make a sketch of what the output will look like. I
ask myself how I can optimally display the circumstances to show sufficient
detail—but not so much detail as to confuse the student. Now that my
concept is finalized, I can log into Sage Cloud and begin work.

Stage 1: Design a Sage Function

The code for Stage 1 of the tangent line interact can be found in Figure 1.
As you can see, first I declare the function f(x) = x3 − x and then

I declare a second function for the derivative. I had Sage calculate the
derivative for me, but surely I could just have defined f ′(x) = 3x2 − 1
instead.

The idea of having Sage compute the derivative for me is that perhaps
later, I might want to use other functions, like f(x) = sinx for example.
Having Sage compute the derivative for me rules out the possibility that I
could forget to change the derivative from f ′(x) = 3x2−1 into f ′(x) = cosx,
in that case.

Next, I use a def command to define my own function tangent at point.
This is the heart of Stage 1 of my process for making an applet. The func-
tion designed at this stage is to represent the nucleus of the entire interact.
It will slowly evolve into a functioning interactive webpage.

Naturally, a tangent line can be produced when I have three ingredi-
ents: the slope, the x-coordinate and the y-coordinate. The x-coordinate
is going to come from a slider when the interact is completed, but now it
is a real number input (called x0) to the function we are creating with the
def command. Most interacts have multiple sliders because they need more
parameters.

We have to compute the y-coordinate and the slope ourselves. Those
numbers come from evaluating f(x) and f ′(x) at x0. Once equipped with
the slope of the tangent line, we need the y-intercept. The way I teach this
is that I have students use the point-slope formula:

y − y0 = m(x− x0)

6.2. THE TANGENT-LINE INTERACT 283

f(x) = x^3 - x

f_prime(x) = diff(f(x), x)

def tangent_at_point(x_0):

y_0 = f(x_0)

m = f_prime(x_0)

because y - y_0 = m(x - x_0) we know that

y - y_0 = m*x - m*x_0

y = m*x + y_0 - m*x_0

therefore b = y_0 - m*x_0

b = y_0 - m*x_0

P1 = plot(f(x), -2, 2, color=’blue’)

P2 = plot(m*x + b, -2, 2, color=’tan’)

P3 = point((x_0, y_0), color=’red’, size=100)

P = P1+P2+P3

P.show()

return

Figure 1. The Code for Stage 1 of “The Tangent Line” Interact

and then use algebra to convert this into y = mx+ b form. However, when
writing a computer program, one should have an explicit formula for the
y-intercept, here denoted b.

The four lines that follow are “comments” and have no effect on the
computer. They are meant to tell the user what the intended effect of some
nearby code should be, in the programmer’s mind. I emphasize that com-
ments are not infallible words of an omniscient being, but rather a statement
of the programmer’s intent. Any lines that have a # at the start are com-
ments, and will be ignored by the computer. Here, I use that symbol to
derive my shortcut formula, b = y0 −mx0.

Three plot commands follow. First, we want to plot the function f(x)
on the interval −2 < x < 2, and I have chosen the color blue. Second, we
want to plot the tangent line y = mx+ b on that same interval, and I have
chosen the color tan, because it sounds like the beginning of “tangent line.”
Next, I’ve added a big red point (a colored dot) at their intersection, to help
the user see where they should be looking. I chose the color red, because

284 6. BUILDING INTERACTIVE WEBPAGES WITH SAGE

it usually signifies something important. Recall that superimposing plots in
Sage is done by “adding” them. Therefore, I add these three plots together.

Last but not least, I have to show the superimposed plot, and finally the
function has concluded. This conclusion is marked with a return command.

If you need some reminders about adding plots, to accomplish superim-
position of plots, see Page 18. For reminders about the point command,
see Page 15.

Stage 2: Polish this Function

Once you get your function working, it is a good idea to tinker with it for a
while and get it exactly how you want it. This is not because it is impossible
to make changes later. I have even made changes after Stage 5. However, it
becomes increasingly irritating to the programmer to make changes in later
stages. Therefore, take time to get the colors right, the boundaries of the
graph, and anything else.

In this particular case, I tested my function with the following:

tangent_at_point(0.5)

tangent_at_point(1.5)

tangent_at_point(-1.75)

While the display was far from ugly, there was room for improvement.
For example, in the last plot, the tangent line is relatively steep (with a
slope of 8.1875), thus the tangent line actually goes up to y = 25 before
exiting the plot. This makes the cubic curve appear tiny, because the curve
goes up only to y = 6. Therefore, it seems to me that I must bound the
y-coordinates of the plots. I did this for both f(x) and the tangent line,
restricting them to −6 < y < 6, because that is the range of f(x) = x3 − x
over the domain −2 < x < 2.

If you look at the code in Figure 2, you can see the added ymin and ymax

options inside the first two plot commands.
Next, I thought the red dot was a bit large, and so I cut the size from

100 down to 50. Note, this is the area of the dot and so this does not cut
the diameter by half. Since the area of the dot is cut by half, the diameter
is cut by 1/

√
2 ≈ 0.707106 · · · .

Also, I thought a gridline background would be helpful for the plot. If
you look at the command for P1, you can see that I’ve added the command
gridlines=’minor’ to that plot command. Since it is the “bottom” of the
three superimposed plots, it will show on composite superimposition as a
background.

I also thought it might be nice to share with the user the numerical
values of x0, y0, m, and the equation of the tangent line. You can see some
new print commands after the P.show() statement. The exact syntax for
the way that the commas and quotes interact can be confusing. Don’t let
that be a barrier for you now—it is not important to our progress here.

6.2. THE TANGENT-LINE INTERACT 285

f(x) = x^3 - x

f_prime(x) = diff(f(x), x)

def tangent_at_point(x_0):

y_0 = f(x_0)

m = f_prime(x_0)

because y - y_0 = m(x - x_0) we know that

y - y_0 = mx - m*x_0

y = mx + y_0 - m*x_0

therefore b = y_0 - m*x_0

b = y_0 - m*x_0

P1 = plot(f(x), -2, 2, color=’blue’, ymin=-6, ymax=6,

gridlines=’minor’)

P2 = plot(m*x + b, -2, 2, color=’tan’, ymin=-6, ymax=6)

P3 = point((x_0, y_0), color=’red’, size=50)

P = P1+P2+P3

P.show()

print

print "x_0 = ", x_0

print "y_0 = f(x_0) = ", y_0

print "m = f’(x_0) = ", m

print "tangent line: y = (", m, ")*x + (", b, ")"

return

Figure 2. The Code for Stage 2 of “The Tangent Line” Interact

Next, I reissued the x = 0.5, x = 1.5, and x = −1.75 test cases. They
look much better now, so it is time for Stage 3.

Stage 3: Convert to an Interactive Function

Now we’ll learn about the @interact command and how to make sliders for
the parameters in our subroutine. Three changes will be made in the code
now, two of which are minor, but one of which takes a bit of explaining.

286 6. BUILDING INTERACTIVE WEBPAGES WITH SAGE

In particular, the first four lines

f_prime(x) = diff(f(x), x)

def tangent_at_point(x_0):

y_0 = f(x_0)

were at this time changed into

f_prime(x) = diff(f(x), x)

@interact

def tangent_at_point(x_0 = slider(-2, 2, 0.1, -1.5,

label="x-coordinate")):

y_0 = f(x_0)

First, you can see that I’ve added the @interact command, on a line
by itself, above the def command that starts our function. This command
signals Sage that we are creating an interact.

Second, and this requires a bit of explaining, I have used the slider

command to change x0 from a numerical input into a slider that the user
can manipulate. The first two parameters tell Sage that the x0 variable will
be restricted to the interval −2 ≤ x ≤ 2. The third parameter tells Sage the
granularity of the slider. In this case, we want each move to represent 1/10.
Thus if the slider is at x0 = 0.5, the two positions to either side would be
0.4 and 0.6. The fourth parameter represents the initial condition. In this
case, the slider will start out with x0 set to −1.5, but the user can move it
around to other values. Finally, the fifth parameter (which is optional) will
give a human-readable label to the slider.

Third, inside of Sage Cloud, I am no longer going to call the func-
tion with commands like tangent at point(-1.75). Instead, I will type
tangent at point(). This is because I am not passing x0 as a number to
the function, but rather using a slider to change that value often.

At this point, we have an interactive function inside of Sage Cloud. We
should take a moment to play around with it, and see how it works. Note
that when you click and drag the slider around, you must let go of the mouse
button (or touchpad) before the interactive function will react.

So you can see what it will look like, I’ve put a screen capture of the
interact in Figure 3.

Stage 4: Insert into a Web Template

In this Stage, I cut-and-paste my interactive function from Sage Cloud into
an HTML file, thus constructing a rudimentary interactive webpage. You
can use any HTML template you want for your interactive webpage; how-
ever, I have made one available to you. The template can be found as
“generictemplate.html” in either of the project directories on Sage Cloud
for this chapter. It is also given as Figure 5.

6.2. THE TANGENT-LINE INTERACT 287

Figure 3. A Screen Capture of the Aquarium Interact

I’m sure that the reader knows how to cut-and-paste, but sometimes
very minor things can go wrong in this process. Therefore, at the risk of
seeming childish, I’m going to spell out the steps now very carefully. Please
do not feel insulted.

The Exact Steps for Cutting-and-Pasting into the Template

(1) I highlighted the interactive function from Stage 3 in Sage Cloud.
(2) I gave the “copy” command to my browser. (Since I use a Mac, this

is “command-C” but it would be different if you are using UNIX,
LINUX, or Windows.)

(3) I located the spot marked “You should cut-and-paste your Sage
interactive function here” in the generic template HTML file, and
highlighted it, including any lines with the # mark. (To edit HTML
files, I use TextWrangler Version 3.5.3, but you can use whatever
you like—even Sage Cloud—to edit HTML files.)

(4) I gave the “paste” command to my HTML editor.
(5) I saved the file using the “Save As” command under a new filename—

in this case, Stage4.html.
(6) I changed “YourTitleGoesHere, for the first time” into “Exploring

the Tangent Line.”
(7) I changed “YourTitleGoesHere, for the second time” into “Explor-

ing the Tangent Line.”
(8) I changed “YourNameGoesHere” into “Prof. Gregory V. Bard.”
(9) I changed “PutTheDateHere” into “December 28th, 2013.”

You can now view the HTML file in your browser. As you can see, it
is very basic—only a skeleton. One can click the big blue button marked
“Launch the Interactive Applet Now” and then our interact appears. Take
a moment to enjoy it. We’ve gone from something that was just a concept
to an actual interactive webpage!

288 6. BUILDING INTERACTIVE WEBPAGES WITH SAGE

Stage 5: Flesh-Out the Webpage

At this point, one can edit the webpage just like any other webpage. In the
template, I have spots for “Overview,” “Instructions,” and “Discussion.” Of
course, you can have as many or as few such headings as you want. Likewise
you can put as many or as few paragraphs under each one as you might like.

The final interactive web page—the output of Stage 5—can be found on
my own webpage. Just go to gregorybard.com and click on “Interactive
Web Pages for Learning Math.” You’ll find the interact under the title
“Exploring the Tangent Line.”

6.3. A Challenge to the Reader

You’ve now read about what needs to happen when creating an interactive
webpage in Sage. I would strongly encourage you, perhaps even beg you, to
take a moment now to try it yourself. There’s no better way to see if your
understanding is total, or to identify any minor gaps.

You can pick any task that you want, but I’d recommend the following
task: Perhaps you are going to teach about sine waves as they occur in light,
electricity, sound and so forth. For example, maybe you wish to explain to
the student the role of amplitude and angular velocity (radians per second).
In summary, imagine that you want to make an interact which will graph

f(t) = A sin(ωt)

where A and ω are controlled by sliders.
For the plot, I recommend using −10 < x < 10 and −5 < y < 5. For

the amplitude, while one could see advantages to forcing the amplitude to
be positive, I think it might be nice for students to learn the effect of A ≤ 0,
so I recommend −5 ≤ A ≤ 5 volts. For ω, it might be confusing to explain
what ω = 0 represents, so perhaps 0.5 ≤ ω ≤ 5 is a good choice. I had A
in a granularity of each step being 1/4th of a volt and ω in a granularity of
1/2 radians per second.

Give it a try, and if you like, compare your work with my files. I rec-
ommend you try to complete all five stages before comparing your work to
mine. However, if you get stuck, then feel free to take a peak at my code
earlier in the process.

6.4. The Optimal Aquarium Interact

The overarching goal is to present a student with a question at the start of
a course (or a unit of some course) which

(1) they will be able to understand at that time,
(2) which they cannot solve at that moment,
(3) which they might want to solve, and

6.5. SELECTORS AND CHECKBOXES 289

(4) which they will be able to solve after completing that course (or
completing that unit of the course).

The course in this case is Calculus I and the unit is optimization. Here,
we present a problem where the dimensions for the design of an aquarium are
required. The goal is to make a 64,000 cubic inch aquarium, with length-to-
width ratio of 2.0, but minimum costs. The costs of the top of the aquarium
are 0.5 cents per square inch, the sides are 5 cents per square inch, and the
bottom is 1.3 cents per square inch. The design of the aquarium2 must meet
the two requirements of volume and length-to-width ratio (to the nearest
1%) but should do so with minimal cost.

Of course, this problem is easy to solve with calculus but the goal is to
show that it is hard to solve without it, by intuition alone. One imagines
a classroom full of students, most of whom won’t be able to simultaneously
address the volume and length-to-width ratio requirements. Of those stu-
dents who have satisfied both requirements, most of them will stop at that
point, ignoring the cost minimization. Then one can ask students what costs
they managed to obtain, and it will become clear that the cost is not the
same for all students. Next, the professor might state the optimal solution
so that many of the students can see that it is indeed cheaper than their
own, but perhaps not by much. Last but not least, the professor should
solve the problem with explicit algebra and calculus, several lessons later,
when the unit on optimization has been completed.

6.5. Selectors and Checkboxes

Below is a very simple interact, to graph a few polynomials. I wrote it
quickly, to be able to show you how you can make pull-down menus or
check boxes for your interacts in Sage. Here is the code:

@interact

def polynomial_grapher(mypoly =

selector([x^2-4, x^3-x, x^2+1], label="Polynomial: "),

show_grid = False):

if (show_grid == True):

P = plot(mypoly, -3, 3, ymin = -5, ymax = 5,

gridlines="minor")

else:

P = plot(mypoly, -3, 3, ymin = -5, ymax = 5)

show(P)

We see two new commands. First, selector will make a pull-down menu
with choices being the three polynomials shown in the code. The label will

2For a class with middle-aged students who are “going back to school,” the same
problem can be posed in the guise of designing a cheaply manufactured warehouse with
costs for the floor, roof, and walls.

290 6. BUILDING INTERACTIVE WEBPAGES WITH SAGE

Figure 4. A Screen Capture of the Polynomial Grapher Applet

be the word “Polynomial:” so that the user knows the purpose of the pull-
down. (I suppose in this case that was obvious, but perhaps in other cases
it is not obvious.)

Second, we have an optional parameter show grid that is defaulting to
False, just as we had verbose default to False on Page 244. Whenever you
have an optional parameter in a Sage interact that can be True or False,
Sage knows that you want to have a box that can be checked or unchecked.
The plot of our selected polynomial will be drawn with or without gridlines,
depending on whether show grid is True or False. The rest of the code is
nothing new for us.

Figure 4 has a screen capture of this applet, but note that the checkbox
has been eclipsed by the pull-down menu.

6.6. The Definite Integral Interact

At first, this interact seems really simple. We wish to explain the meaning
of the definite integral, and we’ve chosen an easy function: y = x2 − 1. The
bounds of integration are −1.5 < x < 1 initially, but the user can change
either of those bounds. The area included by the definite integral is shaded
gray, to explain to the student that you shade from the curve to the x-axis.
Using the “plotting integrals” technique from Section 3.1.4 on Page 95, we
can make such a plot in Sage. Therefore, at first glance, this seems like it
would be an easy interact to create.

As it turns out, this is not quite true. First, we have to handle the case of
the student interchanging the lower and upper bounds. This will cause the

6.6. THE DEFINITE INTEGRAL INTERACT 291

(signed) area that the applet computes to have the opposite sign, because∫ b

a
f(x) dx = −

∫ a

b
f(x) dx

Second, Sage reacts badly if the area to be shaded has zero area. In other
words, if a = b, the fill-commands used by the integral plotting technique
are confused, and generate an error message. Therefore, I artificially modify
the width to have 10−12 more than it should. Therefore, the width is never
zero, and the complaint is suppressed.

Finally, I decided to add a large arrow. If the bounds are in the normal
order, left-to-right, then I draw a green arrow in that direction; if the bounds
are “backwards,” or right-to-left, then I draw a red arrow pointing right-to-
left. This will help explain to students what happens if you interchange the
bounds of integration.

As you can see, some of these changes are a bit unexpected. Therefore,
I thought it prudent to include all the code (for all the intermediate stages)
so that you can read how things progressed.

292 6. BUILDING INTERACTIVE WEBPAGES WITH SAGE

<!DOCTYPE HTML>
<html>

<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width">
<title>blah YourTitleGoesHere, for the first time</title>
<script src="https://sagecell.sagemath.org/static/jquery.min.js"></script>
<script src="https://sagecell.sagemath.org/embedded_sagecell.js"></script>
<script>

$(function () {
// Make *any* div with class ’compute’ a Sage cell
sagecell.makeSagecell({inputLocation: ’div.compute’,
template: sagecell.templates.minimal,

evalButtonText: ’Launch the Interactive Applet Now’});
});

</script>
</head>
<body style="width: 1000px;">

<! you may start modifying below this point!>
<! you may start modifying below this point!>
<! you may start modifying below this point!>

<h1>blah YourTitleGoesHere, for the second time</h1>

<p>An Interactive Applet powered by Sage and MathJax.</p>
<p>(By YourNameGoesHere)</p>

<hr>

<h2>Overview</h2>
<p>blah blah blah</p>
<p>yada yada yada</p>
<p>blah blah blah</p>

<h2>Instructions</h2>
<p>blah blah blah</p>
<p>yada yada yada</p>

<div class="compute">
<script type="text/x-sage">

##
You should cut-and-paste your Sage interactive function here.
##

</script>
</div>

<h2>Discussion</h2>
<p>blah blah blah</p>
<p>yada yada yada</p>
<p>blah blah blah</p>

<hr>
Last modified on PutTheDateHere.
</body>
</html>

Figure 5. The suggested HTML template for an Interactive
Webpage—based on work by Prof. Jason Grout.

Appendix A

What to Do When
Frustrated!

Computers are unforgiving when it comes to syntax. For users unaccus-
tomed to that stricture, it can be very frustrating. Here I have listed for
you a checklist of tips that you should use when Sage is rejecting your code
for reasons that you cannot determine. I hope that these 16 questions will
cover most cases.

1: Are you doing Implicit Multiplication?

This particular case is best explained with an example:

solve(x^3 - 5x^2 + 6x == 0, x)

is not correct. You must type instead

solve(x^3 - 5*x^2 + 6*x == 0, x)

In other words, Sage needs that asterisk or multiplication symbol be-
tween the coefficients 5 and 6, and the terms to which they are attached:
namely x2 and x. For some reason, trigonometric functions really cause this
confusion for some users. Sage will reject

f(x) = 5cos(6x)

but will accept

f(x) = 5*cos(6*x)

However, for those users who find this extremely frustrating, there is a
way out of this requirement. If you place the following line

implicit_multiplication(True)

at the start of a Sage Cloud session, then you will be in “implicit multipli-
cation mode.”

Consider the following code:

implicit_multiplication(True)

g=(12+3x)/(-12+2x)

plot(g, 2, 8, ymin=-30, ymax=30)

293

294 A. WHAT TO DO WHEN FRUSTRATED!

At this particular moment (July 18th, 2014) this will work in Sage Cloud,
but not in the Sage Cell Server. Note that the definition of g above does
not have an asterisk between the 3 and the first x nor between the 2 and
the second x. Because we are in “implicit multiplication mode,” those two
missing asterisks are forgiven.

2: Did you Forget to Declare a Variable?

The declaration of variables can be something confusing to those who have
not done a lot of programming in the years prior to learning Sage. In
languages such as C, C++, and Java, all the variables must be declared—
no exceptions. In Sage, the variable x is pre-declared. All other variables
have to be declared, except constants.

For example, if I need x, y, and z to solve a problem, but I also have
a constant g = 9.82, then I must declare the y and the z with var("y

z"). The g gets declared implicitly when I give the command g=9.82. The
variable x is always pre-declared.

For stylistic reasons, some users like to declare x anyway. They would
therefore type var("x y z"). There is no impact in Sage to the redundant
declaration of x. However, visually there is a difference—it treats x in a
more egalitarian way among x, y, and z.

3: Is your Internet Connection Down?

Frequently, if Sage suddenly becomes non-responsive, I realize that it is
because my internet connection has become disconnected. This could be
because of a wireless issue, or just the service going out for a moment or
two. It might be silly to include that in this list, but it is worth mentioning.
Since Sage operates through the internet, if your connection goes down, then
you have to restore your connection to continue using Sage.

π: Are you Getting a Huge Error Message?

Sometimes in Sage, you’ll get a huge error message, on the order of 40 lines
long. This can be intimidating or disheartening even to veteran users.

The key to understanding Sage error messages is to look primarily at
the last line or the last two lines. That’s all you need to know on this point.
However, I’ll now explain why this is the case in the next two paragraphs,
which are only intended for the curious.

What happens when you issue a command is that your code calls Sage,
which probably calls something else in Sage, maybe a third call is made to
part of Sage, but then flow is dispatched to some tool like Maxima, GAP,
R, or Singular, that forms one of the building blocks of Sage. That hand-off
might involve another nine function calls. The lines of code that were being
executed when the error occurs are printed, with the deepest levels given
first and the levels nearest the surface (the user interface) given last.

A. WHAT TO DO WHEN FRUSTRATED! 295

It is most likely that the error is in your code (the last lines printed)
or possibly in Sage (the next batch of lines). The packages in Sage (e.g.
Maxima, Singular, GAP, and so forth) are very well tested and debugged—
those are the top two-thirds of the mess of lines. This is why you should
look at the last few lines to get information to help you figure out what’s
wrong. Often the last line is the most informative.

4: Is the Sage Cell Server Timing Out?

Let’s say that you’re working on the Sage Cell Server, and you get up to go
to lunch. Then you return, after about perhaps an hour and fifteen minutes.
Probably, your “session” will have “timed out.”

To start over without losing what you had typed into the cell, do the
following:

• Highlight your code
• Give your Web Browser the “Copy” Command
• Reload the Sage Cell Server Webpage
• Give your Web Browser the “Paste” Command
• Click Evaluate

Actually, I do this so frequently, that it has become second nature. Fre-
quently, perhaps as often as once per twenty minutes, I do these five steps
as a way of making sure that my Cell Server session “stays alive.” Another
thought is that if the code you are working on is more than ten lines long,
then perhaps you should be working in Sage Cloud, so that your work will
be more permanent, and accessible to you in future months/years should
you need it.

5: Are you in a Coffee House or Hotel?

The type of public wifi in a coffee house or hotel can cause issues in Sage,
but they are easily remedied. First off, the routers in a hotel often cache
pages for all of their users. For example, it is probable that many guests in
the hotel will view the daily weather or famous news sites. Why download
those for each user again and again, when they can be downloaded once
and cached locally? The easiest way to do this is to make sure you’re using
https rather than http. With Sage Cloud this is the default. With the
Sage Cell Server, you should be sure to type or bookmark:

https://sagecell.sagemath.org/

Again, I emphasize the https. The other issue is very different. Many
coffee houses require you to re-authenticate every 10 or 20 minutes. This
is to make using the internet there, for long periods of time, unappealing.
This way students doing academic work will not hog a seat for two hours.

Usually these re-authentications do not interact well with Sage, and so
you don’t actually even see a screen asking you to re-enter the wifi code.
Just open a new browser window, type the URL of any large and famous

296 A. WHAT TO DO WHEN FRUSTRATED!

site that you haven’t visited in this particular web session, and you’ll see the
re-authentication page. Once you’ve re-authenticated with whatever code is
needed, you can use Sage freely again, as normal.

6: Are your Parentheses Mismatched?

In Sage, just like in mathematics, you need to have a “(” for each “)” and
a “[” for each “].” This is absolutely mandatory.

Here’s an old trick that was taught to me in middle school, for working
with pencil-and-paper mathematics. It works very well for computers also.
To see if you have screwed the parentheses up, start reading from the left
of a particular line, toward the right. Start with zero. Every time you see
“(” count upward by one, and every time you see “)” count downward by
one. The number in your head must never become negative, and it should
be zero when the line ends. If either of these conditions are violated, then
something is wrong.

7: Did you Misspell a Command?

Sometimes the spelling of a command is unclear. For example, is it A.inverse(),
A.invert(), or A.find inverse()? Is it find root or find roots? Those
distinctions are very hard to remember, but you have to get it correct.

The remedy to this dilemma is to first type part of the command, and
then hit tab. If there is only one command that you could mean, Sage will
complete the command for you. If there are several commands which would
match, you get a small drop-down list. We first learned about this on Page 4.

8: Are the Parameters to a Command in the Correct Order?

Another unpleasant surprise can be when the parameters to a command
are in the wrong order. For example, the taylor command for computing a
Taylor polynomial, and the slider command in making applets (interactive
webpages) have four parameters. Consequently, when I try to guess the order
of those parameters, I often guess wrong.

The remedy to this is to type the command, on a line by itself, and
to place the “?” operator after it. Then hit tab. This will bring up the
docstring (or help file) for that command, which will have the syntax—
including the parameters. We first saw this on Page 47.

9: Are the Line-Breaks not Well Placed?

There are times when Python and Sage simply insist that certain spots not
contain a line break. Another issue is that the width of this printed page,
in characters, is vastly smaller than a Sage Cell Server cell or the screen of
Sage Cloud. Therefore, there are times when I have to break the line in this
book, to make the code fit on the page, but it might not always make sense
to do so on the screen.

A. WHAT TO DO WHEN FRUSTRATED! 297

My only word of advice is to experiment, and to be patient as you try
various possibilities.

93
4 : Is there an Indentation Issue?

This is almost the same issue as the above. In Python, indentation is really
important. If you’re just using Sage without programming constructs like
for loops and while loops, then maybe you don’t have to worry about
indentation. However, if you are programming in Python through Sage, as
we learned in Chapter 5, then you must take care with indentation. The
indentation is meaningful, as it shows which commands are subordinate to
which flow-of-control constructs. Perhaps rereading Chapter 5 will help.

Sadly, when cutting-and-pasting code from the electronic version of this
book into the Sage Cell Server, I often find that the indentation is destroyed
or mutilated. The solution is to backspace over all the indentation, and
re-indent using the tab key on your keyboard, line by line, through all of
the code. This will take a lot less time than one might guess.

10: Are you Missing a Colon?

Continuing on the theme of quirks of Python that frustrate students, if
you are programming in Python through Sage, as we learned in Chapter 5,
then you have to remember to put a colon after commands that have some
subordinate commands. These include for loops, while loops, subroutine
def-initions, and the if-then-else construct. See Chapter 5 for examples.

11: Do you have commas in large numbers?

Large numbers in written language often have comma separators. For ex-
ample, consider the following:

• The American/British notation: 1,234,567.89
• The Continental European notation: 1.234.567,89
• The Notation in Sage: 1234567.89

As you can see, you must not use commas to separate the thousands,
the millions, and the billions when entering numbers into Sage. That is
definitely not allowed.

12: Http:// vs Https://?

I mentioned this in # 5, but I’d like to mention it again. When using the
Sage Cell Server, it is much better to use https at the start of the URL rather
than http. This way, your internet traffic with the server is encrypted, and
intermediate routers cannot interfere with it. The danger is not so much
that your mathematics will be spied upon. Instead, intermediate routers
might attempt to cache the http traffic, an act that makes sense for nearly
every type of website except mathematical software.

298 A. WHAT TO DO WHEN FRUSTRATED!

13: Multiple Lines of Output in the Cell Server?

Let’s imagine someone teaching College Algebra. The instructor types

factor(x^2 - 5*x + 6)

into the Sage Cell Server getting the usual useful result. Then, to show the
students a pattern, the instructor types the following four lines into the cell.

factor(x^2 - 5*x + 6)

factor(x^2 - 6*x + 8)

factor(x^2 - 7*x + 10)

factor(x^2 - 8*x + 12)

Only the factorization of the last polynomial is given! Why is this the
case? Because Sage only prints the last line of a Sage Cell computation.
Instead, one should type

print factor(x^2 - 5*x + 6)

print factor(x^2 - 6*x + 8)

print factor(x^2 - 7*x + 10)

print factor(x^2 - 8*x + 12)

and then the appropriate four lines of output are given.

14: Still Not Working?

If this list of sixteen tips did not resolve your problem, then you can find
useful help at the following forum. However, since it is staffed by Sage
experts on an entirely volunteer basis, you might have to wait a few hours or
days for a reply. It certainly is useful (and faster) to search the old postings
for an answer to your question, before making a new posting of your own.
Probably the question you are about to ask has been asked before. Overall,
it is a very good service.

http://ask.sagemath.org

Appendix B

Transitioning to Sage Cloud

Chapter 1 of this book assumes you are using the Sage Cell Server. That’s
great for small and even some medium-sized tasks. However, you will want
to switch to Sage Cloud eventually. Generally, if you are writing code of
more than 20 lines, you definitely want to switch to Sage Cloud. If you are
writing code of between 10–20 lines, you probably want to switch to Sage
Cloud anyway. The Sage Cell Server is meant for simple tasks.

B.1. What is Sage Cloud?

Cloud computing is where dozens or hundreds of computers around the
world combine to present users with one virtual supercomputer. There are
many advantages of cloud computing:

Data Reliability: When you use Sage cloud, all of your Sage work-
sheets will be found in your account. You will have several projects
in your account, and then you can have as many Sage worksheets1

as you like in each project. The data is stored on several machines
in the cloud, scattered around the world, so there is no possible
catastrophe that could destroy every existing copy simultaneously.
As you can see, this is much safer than keeping all of your Sage
files on one laptop.

Data Availability: All of your data is available, all the time, from
any computer in the world that has an internet connection.

Load Balancing: Previously, there were many Sage notebook servers
scattered around the world. However, near peak periods, it might
be the case that one server is busy. In theory, if it is 4 pm in
Wisconsin, it is 5 am in Beijing, and therefore you might have had
better luck connecting to a machine in Beijing. However, you’d
have to know where that server was (and its URL). Then all your
files are still on your usual machine, perhaps in Wisconsin—you’d

1You can also organize the worksheets that belong to projects into directories and
subdirectories, if you feel so inclined.

299

300 B. TRANSITIONING TO SAGE CLOUD

have to move those files yourself. All this would be a hassle. Cloud
computing is the exact opposite—if one server is busy, your compu-
tational job will automatically be sent somewhere else, and you’d
never even know.

Simplicity: Since all the servers are administered by the Sage Cloud
community, small liberal arts colleges do not need to worry about
buying a server, maintaining it, or updating the software. All the
software is up-to-date all the time, and no university need take any
special step, nor purchase additional equipment.

Cost Savings: There are several reasons why Cloud Computing is
extremely cost effective. Normally, computing resources are not
used during the hours when college students and mathematicians
are asleep—3 am to 9 am. Now that all the cloud machines around
the world are serving the entire world all the time, timezones no
longer matter. The problem with old way of doing things—where
major universities would each have their own server—is that you
can’t buy 0.1 servers. The lowest cost would be to buy 1 server, but
perhaps a small liberal arts college only needs 0.05 servers worth of
computing power. By aggregating services, this effect—called the
“cost of indivisibility” in mathematical economics—is mitigated.

Collaboration: Sage Cloud has many collaborative features, such as
making projects public/private, visible to other specific users, and
online chat tools.

Checkpointing: Unless you delete a file, Sage retains not only all of
your files forever, but it also takes snapshots and has all previous
versions of all files. Therefore, if you screw something up, you can
revert to an old version.

Finally, it is the eventual plan that around the 1% most computationally
intensive users would have to pay for their computing time on Sage Cloud—
but only a modest fee—and therefore the rest of the service would be made
available to the typical user for free.

The only disadvantage is that you have to make an account. This takes
less than a minute, but by comparison, you do not need to make an account
for the Sage Cell Server.

B.2. Getting Started in the Cloud

The general structure of your account in Sage Cloud is that it will be divided
into projects. The inter-user sharing takes place at the project level. You
can have Sage worksheets in your projects, or you can divide your projects
into directories and subdirectories if you prefer.

A Sage worksheet is like a sequence of giant cells from the Sage Cell
Server. You can type some lines of code, and then press control-enter (which
is analogous to pressing “Evaluate” in the Sage Cell Server. When you

B.3. OTHER CLOUD FEATURES 301

press control-enter, a horizontal line is drawn. Everything since the previous
horizontal line (or the top of the sheet) is then evaluated as if it were a Sage
cell on the Sage Cell Server.

Because Sage worksheets are files, you can have many of them, copy
them, rename them, move them, and delete them.

This is better explained with a video. The first few minutes of this video
are an overview of what Sage is about in general. After that, a demo of Sage
Cloud is given. The video was made by Prof. William Stein, the founder
and chief architect of Sage and the author of Sage Cloud.

https://www.youtube.com/watch?v=6UGvrVpP89Q

B.3. Other Cloud Features

Several other features of Cloud include using LATEX, Python, R, and the
online chat feature. We will not go into details about that here, but you can
find more information at this url:

http://www.sagemath.org/help.html

Appendix C

Other Resources for Sage

There are many resources for Sage. Here are some major ones:

Master List of Help Resources: At the following URL you will
find a registry of all the items which could go on this list. That
includes tutorials, quick-start guides, reference materials, books,
web tours, and videos. There is a small but growing number of
resources that are written in languages other than English.
http://www.sagemath.org/help.html

Thematic Tutorials: This website is the housing for a very large
number of Sage thematic tutorials. Those tutorials are geared at
common areas of mathematics, like “Calculus,” “Group Theory,”
“Linear Programming,” or “Algebraic Combinatorics.”
http://www.sagemath.org/doc/thematic_tutorials/

Advice Forum: This website is a place where anyone can ask a ques-
tion about Sage, and an expert on Sage will answer it soon. There
is vibrant activity there, since Sage is a large community.
http://ask.sagemath.org

Feature Tour: If you would like to show friends, parents, or non-
mathematicians what Sage is about, there are two single-page fea-
ture tours. One is a bit math-heavy:
http://www.sagemath.org/tour-quickstart.html

The other is about the beautiful graphics that Sage can create:
http://www.sagemath.org/tour-graphics.html

Exploring Mathematics with Sage: This website/eBook by Paul
Lutus is also about Sage, and does a good job of explaining the
open-source culture of Sage development. It also has some very
interesting application problems. Be sure to look at the top of
your screen for the pull-down menu that shows all of the sections.
Otherwise, you cannot navigate beyond the introduction.
http://arachnoid.com/sage/index.html

303

304 C. OTHER RESOURCES FOR SAGE

Web Tour: Aimed at mathematics faculty, the following web tour
can be quite informative about some of Sage’s advanced features,
as well as its basic ones.
http://www.sagemath.org/doc/a_tour_of_sage/

Quick Reference Cards: Several Sage users have made quick refer-
ence cards, to help them learn the commands and have them handy
while using Sage:
http://wiki.sagemath.org/quickref

The Manual: The official Sage Reference Manual can be found at
http://www.sagemath.org/doc/reference/

but this is not for beginners! Be warned, it is literally thousands
of pages. This is like an encyclopedia—you don’t read it cover to
cover, instead you look up what you need.

Official Web Tutorial: This is the official tutorial, geared more to-
ward graduate students, senior math majors, and faculty.
http://www.sagemath.org/doc/tutorial/

Web Tutorial: The following web tutorial by Mike O’Sullivan, and
David Monarres has some topics we did not reach in this book.
Those include abstract algebra, coding theory, and writing larger
programming projects in Sage.
http://www-rohan.sdsu.edu/~mosulliv/sagetutorial/index.html

Numerical Tutorial: If you’re doing coursework or research in nu-
merical computing, the following tutorial is for you:
http://www.sagemath.org/doc/numerical_sage/

Faculty Tutorials: As the website describes itself: “This is a set of
tutorials developed for the Mathematical Association of America
workshops ‘Sage: Using Open-Source Mathematics Software with
Undergraduates’ in the summers1 of 2010-2012. The original au-
dience for these tutorials was mathematics faculty at undergradu-
ate institutions with little or no experience with programming or
computer mathematics software. Because the computer experience
required is quite minimal, this should be useful to anyone coming
with little such experience to Sage.”
http://www.sagemath.org/doc/prep/index.html

Quickstart Tutorials: These are geared toward specific undergrad-
uate math courses, and are meant to be comprehensible to a student
who has just completed that particular course. Furthermore, they
are all very short. Many are a single page. They are at the same

1Funding provided by the National Science Foundation under grant DUE 0817071.

C. OTHER RESOURCES FOR SAGE 305

URL as the above tutorial, but they are listed at the bottom of the
page as appendices to it.

http://www.sagemath.org/doc/prep/index.html

Books that Use Sage: At the time of the publication of this book,
there are 24 listed books on the Sage website that use Sage for
their examples. Of course, some of this are about exotic research-
oriented topics meant for PhD-students in mathematics. However,
several of them are entirely suitable for undergraduates. Here is
the URL with the entire collection.
http://www.sagemath.org/library-publications.html#books

Online Video Mini-Course about Sage: A friend of mine, Travis
Scrimshaw, has made a series of four videos that cover a great
deal about Sage. The videos were made in July of 2013, and are
therefore very up-to-date. They total 4 hours and 55 minutes of
footage.
• Part I: https://www.youtube.com/watch?v=FXbHLWtY7s4
• Part II: https://www.youtube.com/watch?v=9fPf1TQgFlY
• Part III: https://www.youtube.com/watch?v=cbBkH8Sgryw
• Part IV: https://www.youtube.com/watch?v=cyfv9vl6s9M

Appendix D

Linear Systems with
Infinitely-Many Solutions

This section more properly belongs in a linear algebra textbook, and not
in a guide to Sage. However, I find that students often get this material
wrong—during and far after the linear algebra course, and also in lower-
level courses where these situations can occur. Therefore, here is a complete
discussion of how to handle linear systems of equations with infinitely many
solutions. They are fairly rare but not unknown in applications. This topic
is not very hard, kind of deep, and good to explore.

D.1. The Opening Example

The linear system of equations given by

20w + 40x+ 2y + 86z = 154

4w + 8x+ 5y + 31z = 17

w + 2x+ 3y + 13z = −1

−8w − 16x− 4y − 44z = −52

has the matrix given below:

A =


20 40 2 86 154
4 8 5 31 17
1 2 3 13 −1
−8 −16 −4 −44 −52


As it turns out, the matrix A has as its RREF:

A.rref() =


1 2 0 4 8
0 0 1 3 −3
0 0 0 0 0
0 0 0 0 0


307

308 D. LINEAR SYSTEMS WITH INFINITELY-MANY SOLUTIONS

We see here that there are rows of zeros, and we do not see the familiar
and welcome “main diagonal” of ones. The 4 × 4 identity matrix is miss-
ing. Therefore, we are on alert for the possibility of an infinite number of
solutions.

There is a systematic way of addressing this situation. First, we’re going
to identify special entries of the matrix called “pivots” or “anchors.” Then,
we will classify each variable as either free or determined. Third, we will
rewrite the system of equations with all of the determined variables on one
side of the equal signs, and all the free variables as well as constants on the
opposite side. Once this is done, we will have identified each of the infinitely
many solutions to this system of equations.

We’re going to call the left-most non-zero entry of each row “an anchor”
or “a pivot.” Row 1 has as its pivot A11 and Row 2 has as its pivot A23.
Since Row 3 and Row 4 have no non-zero entries (properly, we should say
because they are all-zero rows), they have no pivots. Often, when I work
with pencil and paper, I will circle or underline the entries of a matrix that
are pivots. In this case, I would circle or underline the entry in the top row,
first column (A11) and the entry in the second row, third column (A23).

As we have now learned, each column in a matrix represents a variable,
except the rightmost column, which represent the constants. Of course, each
column either contains a pivot or it does not contain a pivot. Any column
(but not the rightmost) is to be called “effective” and its variable called
“determined” if the column has a pivot. Likewise, any column (but not the1

rightmost) is to be called “defective” and its variable called “free” if the
column does not have a pivot.

The rule of the previous paragraph may appear to be rather arbitrary
and somewhat confusing, but let us just work with it once and see what it
does for us. We will go one column at a time.

• In Column 1, we have a pivot. Therefore, Column 1 is effective and
w is a determined variable.
• In Column 2, we do not have a pivot. Therefore, Column 2 is

defective and x is a free variable.
• In Column 3, we have a pivot. Therefore, Column 3 is effective and
y is a determined variable.
• In Column 4, we do not have a pivot. Therefore, Column 4 is

defective and z is a free variable.

See, that wasn’t so bad, right? Now we’re going to take the RREF,
translate the (non-zero) rows back into algebra, and then move the constants
and free variables to the right of the equal sign, leaving only determined
variables on the left of the equal sign. First, the literal or non-interpreted

1For the very curious: the effective/defective terminology is not used on the rightmost
column because that column does not represent a variable at all. Thus it does not make
sense to discuss if the variable of that rightmost column is free or determined.

D.1. THE OPENING EXAMPLE 309

translation of the RREF into algebra would be

w + 2x+ 0y + 4z = 8

0w + 0x+ 1y + 3z = −3

Now, let’s move the free variables (x and z) to the right-hand side of the
equal signs, to join the constants there. We obtain

w = 8− 2x− 4z

y = −3− 3z

however, I sometimes prefer to write

w = 8− 2x− 4z

x is free

y = −3− 3z

z is free

What the above means is that you can pick whatever values you want
for x and z, but once you do, then w and y are determined by those choices
that you’ve made.

Let’s make seven specific of solutions, by choosing seven pairs of values
for x and z. We obtain:

(1) If x = 0 and z = 0 then w = 8 and y = −3.
(2) If x = 1 and z = 0 then w = 6 and y = −3.
(3) If x = 0 and z = 1 then w = 4 and y = −6.
(4) If x = 1 and z = 1 then w = 2 and y = −6.
(5) If x = 2 and z = 3 then w = −8 and y = −12.
(6) If x = −4 and z = −6 then w = 40 and y = 15.
(7) If x = π and z =

√
2 then w = 8− 2π − 4

√
2 and y = −3− 3

√
2.

Take a moment to see that each of these variable assignments in fact
does satisfy each of the given equations. Do this by hand for the first five.
We’ll use Sage to verify the last two. For the sixth entry in our list, we type

w=40

x=-4

y=15

z=-6

print 20*w + 40*x + 2*y + 86*z

print 4*w + 8*x + 5*y + 31*z

print w + 2*x + 3*y + 13*z

print -8*w - 16*x - 4*y - 44*z

We see exactly what we wanted, namely the right-hand sides of our original
equations: 154, 17, −1, and −52.

Likewise, we can just backspace over those four variable settings and
provide the settings for any specific solution in our list above. More precisely,
in the case of the seventh entry in our above list, we would type

310 D. LINEAR SYSTEMS WITH INFINITELY-MANY SOLUTIONS

w=8-2*pi-4*sqrt(2)

x=pi

y=-3-3*sqrt(2)

z=sqrt(2)

print 20*w + 40*x + 2*y + 86*z

print 4*w + 8*x + 5*y + 31*z

print w + 2*x + 3*y + 13*z

print -8*w - 16*x - 4*y - 44*z

As you can see, we get the output that we wanted: 154, 17, −1, and −52.

D.2. Another Example

Let’s imagine you are asked to find all solutions to the linear system of
equations

3w − 3y + 6z = 51

x+ 4y + 5z = 19

−w + x+ 5y + 3z = 2

2w + 5x+ 18y + 29z = 129

We would begin by converting this to a matrix,
3 0 −3 6 51
0 1 4 5 19
−1 1 5 3 2
2 5 18 29 129


which has as its RREF, the matrix

1? 0 −1 2 17
0 1? 4 5 19
0 0 0 0 0
0 0 0 0 0


First, we identify the pivots. As you can see, I have marked them with

?s. Second, we must classify the variables as “free” or “determined.” In
this case, since w and x have pivots, thus they are determined variables;
likewise, y and z do not have pivots, so they are free variables. Now we
write down the uninterpreted literal translation of the RREF matrix into
algebra, skipping the all-zero rows

w − y + 2z = 17

x+ 4y + 5z = 19

D.2. ANOTHER EXAMPLE 311

Finally, we move the free variables (y and z) to the right of the equal
sign, and obtain

w = 17 + y − 2z

x = 19− 4y − 5z

y is free

z is free

Perhaps if we were asked to find four distinct solutions, we could write:

(1) If y = 0 and z = 0 then w = 17 and x = 19.
(2) If y = 0 and z = 1 then w = 15 and x = 14.
(3) If y = 1 and z = 0 then w = 18 and x = 15.
(4) If y = 1 and z = 1 then w = 16 and x = 10.

A Bit More Terminology

We’ve used the terms “free variable” and “determined variable,” as well
as “elementary column” and “degenerate column.” The term degenerate
system indicates2 any system of linear equations where the solution is not
unique—regardless if it has no solution, or if it has infinitely many solutions.

To distinguish among systems of linear equations with infinitely many
variables, we will use the concept of “degrees of freedom.” The number of
degrees of freedom is the number of free variables. Here, both systems which
we’ve seen up to this point have two degrees of freedom. We’ll see several
of them shortly that have only one degree of freedom. There also exist
systems with three or more degrees of freedom (i.e. three free variables),
but they seem to be very rare in applications, and therefore they are not
emphasized here. Also, a solution where all the variables are determined
and no variables are free (a unique solution) is said to have zero degrees of
freedom. Normally one does not use the “degrees of freedom” vocabulary
for a system without solutions.

The number of degrees of freedom of a system of equations is also called
the right nullity of the matrix which describes that system of equations. The
number of determined variables is called the rank of the matrix. The rank
of matrix comes up in many places throughout the study of matrix algebra.

Challenge Yourself:

Here are four easy examples which you can use to challenge yourself, to see
if you’ve got this right. The final few equations with the word “free” are
given at the end of this appendix. You should also generate 3–4 specific

2The word degenerate is—in the modern era—extremely rude. However, at one time
it must have been polite, or at least socially acceptable. The word was used in the third
quarter of the twentieth century to describe any person who was significantly different
from societal norms. Here, a “normal” linear system of equations is one with a unique
solution. Any deviation from that expected behavior is termed degenerate.

312 D. LINEAR SYSTEMS WITH INFINITELY-MANY SOLUTIONS

solutions, and see if they actually work or not. We will provide a specific
solution where all the free variables are set to 1.

M1 =


1 2 −1 0 1
3 6 −3 2 7
2 4 −2 −1 0
7 14 −7 6 19

 M2 =


1 3 0 0 1
3 9 2 0 7
2 6 −1 −4 −32
7 21 6 5 59


M3 =

 4 20 −24 16
7 35 −42 28
1 5 −6 4

 C2 =

 1 2 3 7
4 5 6 16
7 8 9 25


By the way, that’s the same C2 that we saw back on Page 29. At that

time, we computed that C2.rref() equals

[1 0 -1 -1]

[0 1 2 4]

[0 0 0 0]

and then we stopped and said “there are infinitely many solutions.” How-
ever, now I’d like you to produce equations with free and determined vari-
ables as we’ve done throughout this appendix.

D.3. Exploring Deeper

At this point, the majority of the topic is familiar to you, but the following
minor points will give you further insight.

D.3.1. An Interesting Re-Examination of Unique Solutions

Let’s briefly return to B from the Section 1.5.3, “Matrices and Sage, Part
One” on Page 23. The original matrix and its RREF are

B =


−1 2 1 −5 6
0 0 −1 1 −5
1 3 3 −1 0
−1 5 −1 0 −1

⇒ becomes⇒


1? 0 0 0 −107/7
0 1? 0 0 −12/7
0 0 1? 0 54/7
0 0 0 1? 19/7


Again, I have marked the pivots with ?s. As you can see, all the columns

are elementary and none are degenerate. All the variables are determined,
and none of them are free. For this reason, we have one and only one
solution:

w = −107/7 x = −12/7 y = 54/7 z = 19/7

D.3. EXPLORING DEEPER 313

D.3.2. Two Equations and Four Unknowns

It would be slightly odd, but someone could ask you to produce solutions to
the following two equations.

11w + 88x− 11y + 13z = 47

17w + 136x− 17y + 19z = 65

The reason this looks odd is that, while we have 4 unknowns, we only
have 2 variables. It seems as though we have “too few” equations and that
there is not enough information given in the problem to solve it. Actually,
this intuition is correct. It turns out that there’s a theorem—when there
are fewer equations than unknowns, either there is no solution or there’s
infinitely many solutions—you cannot end up with a unique solution. We
can’t prove that theorem in general here, but we can explore this specific
example.

First, it is extremely straightforward to convert this system of equations
into a matrix, though one that looks a bit odd since it is a 2× 5 matrix.[

11 88 −11 13 47
17 136 −17 19 65

]
We can ask Sage to find the RREF, and then we can identify the pivots.

The RREF is given below, and the pivots have been marked with ?s.[
1? 8 −1 0 −4
0 0 0 1? 7

]
Now using our standard methods, we finish with:

w = −4− 8x+ y

x is free

y is free

z = 7

What does this mean? It means that you can pick any x and any y that
you want. However, once you’ve made that choice, the w is determined by
the formula w = −4 − 8x + y. In contrast to all that change in w, x, and
y, the z is very stereotyped and forever locked at z = 7. It is interesting to
note that we have two degrees of freedom, but simultaneously, there are no
rows of zeros in the RREF.

D.3.3. Two Equations and Four Unknowns, but No Solutions:

It is possible that the curious reader might be interested in a system of
equations with 2 equations, 4 variables, but no solutions. Here is an obvious
example:

w + x+ y + z = 1

w + x+ y + z = 2

314 D. LINEAR SYSTEMS WITH INFINITELY-MANY SOLUTIONS

Clearly, there is no way that w+ x+ y+ z could be both equal to 1 and
equal to 2 at the same time.

D.3.4. Four Equations and Three Unknowns

Consider the system of 4 equations and 3 unknowns given below:

x+ 2y + 3z = 31

4x+ 5y + 6z = 73

7x+ 8y − z = 35

5x+ 7y + 9z = 104

This produces the matrix

G =


1 2 3 31
4 5 6 73
7 8 −1 35
5 7 9 104


with the RREF

G.rref =


1? 0 0 5
0 1? 0 1
0 0 1? 8
0 0 0 0


As you can see, there are three pivots—which I have marked with ?s.

Therefore, each of the variables is determined, and none of them are free.
Finally, we conclude that there is a single solution, with x = 5, y = 1, and
z = 8. Note there is one unique solution, despite the presence of a row of
all zeros.

D.4. Misconceptions

Now I’d like to briefly address a few misconceptions that students often have
about this topic of infinitely many solutions to a linear system of equations.

A Major Misconception:

Frequently, students imagine that if there is a row of zeros, then there will be
infinitely many solutions. However, we saw in Section D.3.2, a case where
a matrix had no row of zeros—but it had infinitely many solutions. In
Section D.3.4, we saw a case where the matrix had a row of zeros, but it
had exactly one solution. Therefore, what does a matrix tell you, when one
of the rows is all zeros?

If you have the same number of variables as equations, then you can
use the rule of thumb from Section 1.5.8 on Page 28. Otherwise, the row
of zeros tells you absolutely nothing. Instead, you must identify the pivots,
and then determine which variables are free and which are determined—as
we’ve been doing throughout this appendix.

D.5. FORMAL DEFINITIONS OF REF AND RREF 315

A Less Common Misconception:

Sometimes students will imagine that a column is effective if it is zero ev-
erywhere but one entry with a one in it. While this is almost always true,
here is a counterexample that shows this belief is false. Consider the matrix

Q =

 1? 0 1 3
0 1? 0 2
0 0 0 0


As you can see, the column for each variable is zero everywhere, except

for a single one. A student with this misconception would imagine that each
variable is determined, and that none are free. This confused student would
say there is one single solution: x = 3, y = 2, and z = 0. However, that’s
clearly false.

In particular, I draw your attention to the third column, where there is
a single 1 and all the entries are zero. That column looks to be elementary,
but because that lonesome 1 is not a pivot, the column is not elementary,
but is instead degenerate. Here you can see the genuine value of marking
the pivots with ?s. The pivots in this matrix are Q11 and Q22, yet Q13 is
not a pivot. Clearly, column three has no pivot. Therefore, z is free. We
should write

x = 3− z
y = 2

z is free

to describe the infinite set of solutions.

D.5. Formal Definitions of REF and RREF

For the very curious, the formal definitions of pivot, REF, and RREF are
given below.

• An entry of a matrix is a pivot if and only if it is the leftmost
non-zero entry in its row.
• Therefore, by definition, there are never any non-zero entries to the

left of any pivot.
• If a matrix is such that there are no non-zero entries to left of, or

below, any pivot then that matrix is said to be in row-echelon form
or REF.
• If a matrix is such that there are no non-zero entries to left of,

below, or above, any pivot then that matrix is said to be in reduced
row-echelon form or RREF.
• Sometimes, a matrix is such that there are no non-zero entries to

the left of, below, above, or even to the right of any pivot.

316 D. LINEAR SYSTEMS WITH INFINITELY-MANY SOLUTIONS

– If the system is exactly defined, that’s called a permutation
matrix. When solving a system of equations with a permu-
tation matrix, you’ll see that the unknowns are just the con-
stants, though probably in a different order. Permutation ma-
trices come up in several branches of linear algebra, both pure
and applied.

– If the system is over-defined or under-defined, this is called a
rook matrix because of some interesting problems related to
mathematics and chess, but they also come up in combina-
torics problems.

D.6. Alternative Notations

A more sophisticated notation exists for exploring these spaces of infinitely
many solutions. If you have already studied vectors, then you might find this
section extremely interesting. However, if you are not very comfortable with
vectors, you should probably stop reading this appendix now. Alternatively,
you can jump to Section D.7, “Geometric Interpretations in 3 Dimensions,”
on Page 316 if you like.

Consider the first example of this appendix, but writing x = x instead
of “x is free,” and z = z instead of “z is free.” We obtain:

w = 8− 2x− 4z
x = x
y = −3− 3z
z = z

⇒


w
x
y
z

 =


8
0
−3
0

+ x


−2
1
0
0

+ z


−4
0
−3
1


Now consider the second example of this appendix, but writing y = y

instead of “y is free,” and z = z instead of “z is free.” We obtain:

w = 17 + y − 2z
x = 19− 4y − 5z
y = y
z = z

⇒


w
x
y
z

 =


17
19
0
0

+ y


1
−4
1
0

+ z


−2
−5
0
1


To make sure you’ve got it, we’ve got two more challenges:

5. Convert M3 from Page 312 into this vector-based notation.
6. Convert C2 from Page 312 into this vector-based notation.

D.7. Geometric Interpretations in 3 Dimensions

There are some remarkably useful ways to visualize these sorts of problems
geometrically. Just as 2x+3y = 6 represents a line in a plane, x+2y+3z = 6
represents a plane floating in space. When you intersect two lines (or solve a
system of 2 linear equations in 2 unknowns) then you usually are computing
the point where the two lines intersect. However, there are the “minor
cases.” One minor case is when the two lines are parallel, and thus never

D.7. GEOMETRIC INTERPRETATIONS IN 3 DIMENSIONS 317

intersect. The other minor case is when both lines are actually the same
line, and there is an infinite number of solutions.

When you have a system of three linear equations and three variables,
you are intersecting three planes in ordinary space. Usually, the three planes
will intersect at a common point, but once again, there are the minor cases.
This time there are 4 minor cases.

• The first is that it is possible that the three planes never have a
point in common: much like two opposite walls of a rectangular
room and the roof of that room. Since the two opposite walls are
parallel, they never have a point in common.
• The second is when the three planes have a line in common. Imag-

ine a hardcover book that doesn’t have too many pages, partially
open, with very stiff pages. The three planes can be any of the very
stiff pages, or either of the covers. Furthermore, these planes have
the spine of the book (which is a line) in common.
• The third or truly rare case for three variables is when all three

planes are actually the same plane, and any point in that plane
solves all three equations. However, that does not mean that every
point in three-dimensional space is a solution. Rather, a point has
to be in the plane to be a solution.
• A fourth (non-sense) case is the following matrix: 0 0 0 0

0 0 0 0
0 0 0 0


where each of the three equations is actually the trivial equation:

0x+ 0y + 0z = 0

and therefore every point in 3-dimensional space satisfies these
“equations.” The solution space is our entire 3-dimensional uni-
verse.

D.7.1. Visualization of These Cases

Using Sage, each of these pictures can be drawn. However, being 3D images,
they can only be seen on your screen where there can be color, your mouse
can move the images around to see them from various angles, and the planes
can be made transparent. However, I cannot put meaningful pictures of that
sort on the printed page of a black-and-white book.

Instead, I have made an applet for you. This applet, or interactive
webpage, is titled “Visualizing Infinitely Many Solutions in a Linear Sys-
tem of 3 Equations and 3 Unknowns” and can be found on my webpage
www.gregorybard.com after clicking on “Interactive Web Pages for Teaching
Math.” Three examples are given there. For the “zero degrees of freedom”
case, we use the matrix A from Page 19; for the “one degree of freedom”

318 D. LINEAR SYSTEMS WITH INFINITELY-MANY SOLUTIONS

case, we use the matrix C2 which appeared on Page 29 and Page 312; for
the “two degrees of freedom” case, we use the matrix M3 from Page 312.

D.7.2. Geometric Interpretations in Higher Dimensions

Problems with four or more variables require the notions of high-dimensional
spaces and hyperplanes. For example, with 2 equations in 4 unknowns in
the RREF, you often have the solutions turning out to be a plane floating in
4-dimensional space. With 3 equations in 4 unknowns, the solution is often
a 3-dimensional hyperplane in that 4-dimensional space. The hyperplane
has the same geometry as the universe that we live in. This all sounds very
complicated, but it can get worse, actually.

With 5 unknowns and 2 equations in the RREF, the solutions often are
a subspace of 3-dimensions floating in a 5-dimensional space. (That’s three
degrees of freedom, by the way.) One way to imagine this is a universe larger
and more complicated than our own, but one tiny subspace of that universe
is our entire “everyday universe.” That tiny subspace is the solution set.

After much coursework, mathematicians can learn to understand these
ideas formally, in the sense of algebra. However, only very few people can
actually visualize these objects. The vast majority of us, including myself,
cannot—for many and myself, visualization ends at 3-dimensions. Therefore,
we will not explore the geometrical point of view in high dimensions any
further.

D.8. Dummy-Variable Notation

Many textbooks insist that the free variables be rewritten as s and t when
there are two degrees of freedom, and just t when there is one degree of
freedom. This is an extremely odd choice, as it seems to blur the line between
free variables and determined variables. (Just for completeness, when there
are three degrees of freedom, the free variables would be changed to r, s,
and t.)

If we felt compelled to follow that notation then we would have a very
simple (but very unneeded) extra step when processing the first example of
this appendix. Namely, we would make the following change:

w = 8− 2x− 4z
x = x
y = −3− 3z
z = z

⇒


w = 8− 2s− 4t
x = s
y = −3− 3t
z = t

and similarly, for the second example of this appendix,

w = 17 + y − 2z
x = 19− 4y − 5z
y = y
z = z

⇒


w = 17 + s− 2t
x = 19− 4s− 5t
y = s
z = t

D.9. SOLUTIONS TO CHALLENGES 319

At first glance, this change is an extra step, yet appears to accomplish
nothing. However, this notation is not totally without merits. For example,
a system with one degree of freedom has a t in it, which is always the free
variable. Likewise, with two degrees of freedom, there will be an s and t.
So there is no doubt as to which variables are free and how many of them
are free. However, similar things can be said for the notation that I used
throughout the appendix, by using the word “free.” Moreover, it seems
a pity to turn a 4-variable problem into a 6-variable problem—4-variable
problems are hard enough as it is. Last but not least, t is often confused
with +, and similarly s is often confused with 5. All things considered, I
think it is best to avoid introducing new variables.

However, if your instructor forces you to use t, then note that a capital
T is easier to distinguish from a + sign than a lowercase t would be.

D.9. Solutions to Challenges

(1) For M1 the solution is

w = 1− 2x+ y

x is free

y is free

z = 2

A sample solution would be w = 0, x = 1, y = 1, z = 2.
(2) For M2 the solution is

w = 1− 3x

x is free

y = 2

z = 8

A sample solution would be w = −2, x = 1, y = 2, z = 8.
(3) For M3 the solution is

x = 4− 5y + 6z

y is free

z is free

A sample solution would be x = 5, y = 1, z = 1.
(4) For C2 the solution is

x = −1 + z

y = 4− 2z

z is free

A sample solution would be x = 1, y = −2, z = 1.

320 D. LINEAR SYSTEMS WITH INFINITELY-MANY SOLUTIONS

(5) Here we transform the solution for M3 into vector notation.

x = 4− 5y + 6z
y = y
z = z

⇒
 x

y
z

 =

 4
0
0

+ y

 −5
1
0

+ z

 6
0
1


(6) Here we transform the solution for C2 into vector notation.

x = −1 + z
y = 4− 2z
z = z

⇒
 x

y
z

 =

 0
0
0

+ z

 1
−2
1



Appendix E

Installing Sage on your
Personal Computer

My customary response when people ask me about installing Sage on their
personal computer is “Are you sure that you want to do this?”

Reasons Against a Local Installation:

Part of the genius of Sage is that it brings cutting-edge mathematical soft-
ware to anyone who has access to the internet. From any web-browser, you
can use the Sage Cell Server for small computations, and for large compu-
tations, you can use Sage Cloud.

Keeping your work on Sage Cloud has many advantages over a local
installation. For example, if your laptop is lost or stolen, you do not lose
your files. If you need to do work while traveling, you can use any computer
with an internet connection. It is very easy to share your projects with
others in Sage Cloud, by giving them electronic access. If your computation
has to run for a few hours, you don’t have to keep your laptop “tied up” by
the computation if the computation is being done on Sage Cloud. All the
software packages will always be up to date, without any extra effort on the
part of the user. Personally, I have never had a local installation of Sage.

In the classroom, this is particularly an important point to dwell on. If
an instructor asks a group of 40 students to do a local install, the instructor
will have to deal with their various operating systems, various machines,
and student inexperience. Many students might be rather computer literate
but probably the worst 2–3 of those 40 would be significantly less computer
literate. As computers become easier and easier to use, the skill level of
the average user tends to be decreasing. For example, the concept of the
directory tree and subdirectories is now one that students find confusing and
difficult to understand at first. Students are often extremely intimidated and
hostile to the “command line,” or are at best unfamiliar with it.

Often, students who have a grudge against an instructor (for having high
standards or difficult examinations) find themselves unable to complain to

321

322 E. INSTALLING SAGE ON YOUR PERSONAL COMPUTER

department chairs and Deans on that basis, and so they can use the difficulty
of using mandatory computer software as a basis for complaint. For example,
“But, Dean XYZ, you don’t understand, I couldn’t even get the computer
program to install!”

Reasons in Favor of a Local Installation:

Upon further thought, there are also some advantages to performing a local
installation. While broadband internet access is ubiquitous in most of North
America, this is less the case in rural China, sub-Saharan Africa, and (I am
told) parts of Mississippi. One enormous disadvantage of both the Sage
Cell Server and Sage Cloud is that they require internet access. Several
members of the Sage community are involved with the African Institute for
Mathematical Sciences, a community attracted to Sage due to its absence
of cost. Furthermore, there are some parents in the USA who refuse to
permit their children to have access to the internet at all, on a religious
basis. This might be a factor for some high school teachers. One of my
former undergraduate research assistants grew up in such a household.

On the positive side, while installing Sage on your machine takes a lot of
time and effort, the result will be that it runs much faster. A lot of the delay
in using Sage is the transit time between your computer and the servers. For
those with internet connections that are slow, this is an important factor.

Instructions for the Mac:

If you are using a Mac, and have OS X, then you should go to this URL:
http://www.sagemath.org/download-mac.html

Further instructions are found at:
http://www.sagemath.org/mirror/osx/README.txt

The Sage LiveCD:

This is a bootable CD from which you can run Sage directly. It can be found
at this URL:

http://www.sagemath.org/download-livecd.html

Instructions for Unix and Linux Users:

You can find binaries for a Unix or Linux install at this URL:
http://www.sagemath.org/download-linux.html

However, you might also want to build the entire system from scratch,
if you are an experienced software developer. That’s part of the fun of
open-source software, after all. Because Sage is a large and complex system,
this might take more time than you might first anticipate. Those bold and
experienced users should visit this URL:

http://www.sagemath.org/download-source.html

E. INSTALLING SAGE ON YOUR PERSONAL COMPUTER 323

Instructions for Microsoft Windows:

The download for Windows users can be found at the following URL:
http://www.sagemath.org/download-windows.html

However, I strongly recommend the instructions found at:
http://wiki.sagemath.org/SageAppliance

As it comes to pass, you’ll be installing VirtualBox, which is a virtual
machine that will encapsulate Sage. This is a highly tested and safe process.
I am told that there is almost no performance lag compared to Linux and
Mac installations.

Appendix F

Index of Commands by
Name and by Section

Here we have a comprehensive index of all the commands in this book.
First, we present them sorted thematically (by section). Second, we present
them sorted alphabetically, by name. Many thanks to Thomas Suiter, who
compiled this index.

325

326 F. INDEX OF COMMANDS BY NAME AND BY SECTION

S
ec

ti
on

C
om

m
an

d
D

es
cr

ip
ti

on

1.
2

sq
rt

C
om

p
u

te
s

th
e

sq
u

ar
e

ro
ot

1.
2

N
R

et
u

rn
s

a
d

ec
im

al
ap

p
ro

x
im

at
io

n
1.

2
n
u

m
er

ic
al

ap
p

ro
x

R
et

u
rn

s
a

re
al

n
u

m
b

er
,

if
p

os
si

b
le

.
L

on
gh

an
d

fo
r

th
e

co
m

m
an

d
”n

”
1.

2
ex

p
A

n
ab

b
re

v
ia

te
d

n
ot

at
io

n
w

h
en

d
ea

li
n

g
w

it
h

ex
p

on
en

ti
al

s,
n

am
el

y
ex

1.
2

lo
g

C
om

p
u

te
s

an
y

lo
ga

ri
th

m
,

b
u

t
ta

ke
s

th
e

n
at

u
ra

l
lo

ga
ri

th
m

b
y

d
ef

au
lt

1.
3

si
n

C
al

ls
th

e
tr

ig
on

om
et

ri
c

fu
n

ct
io

n
”s

in
e”

in
ra

d
ia

n
s

1.
3

co
s

C
al

ls
th

e
tr

ig
on

om
et

ri
c

fu
n

ct
io

n
”c

os
in

e”
in

ra
d

ia
n
s

1.
3

ta
n

C
al

ls
th

e
tr

ig
on

om
et

ri
c

fu
n

ct
io

n
”t

an
ge

n
t”

in
ra

d
ia

n
s

1.
3

cs
c

C
al

ls
th

e
tr

ig
on

om
et

ri
c

fu
n

ct
io

n
”c

os
ec

an
t”

in
ra

d
ia

n
s

1.
3

se
c

C
al

ls
th

e
tr

ig
on

om
et

ri
c

fu
n

ct
io

n
”s

ec
an

t”
in

ra
d

ia
n

s
1.

3
co

t
C

al
ls

th
e

tr
ig

on
om

et
ri

c
fu

n
ct

io
n

”c
ot

an
ge

n
t”

in
ra

d
ia

n
s

1.
3

ar
cs

in
C

al
ls

th
e

in
ve

rs
e

tr
ig

on
om

et
ri

c
fu

n
ct

io
n

of
si

n
e

in
ra

d
ia

n
s

1.
3

ar
cc

os
C

al
ls

th
e

in
ve

rs
e

tr
ig

on
om

et
ri

c
fu

n
ct

io
n

of
co

si
n

e
in

ra
d

ia
n
s

1.
3

ar
ct

an
C

al
ls

th
e

in
ve

rs
e

tr
ig

on
om

et
ri

c
fu

n
ct

io
n

of
ta

n
ge

n
t

in
ra

d
ia

n
s

1.
3

ar
cc

sc
C

al
ls

th
e

in
ve

rs
e

tr
ig

on
om

et
ri

c
fu

n
ct

io
n

of
co

se
ca

n
t

in
ra

d
ia

n
s

1.
3

ar
cs

ec
C

al
ls

th
e

in
ve

rs
e

tr
ig

on
om

et
ri

c
fu

n
ct

io
n

of
se

ca
n
t

in
ra

d
ia

n
s

1.
3

ar
cc

ot
C

al
ls

th
e

in
ve

rs
e

tr
ig

on
om

et
ri

c
fu

n
ct

io
n

of
co

ta
n

ge
n
t

in
ra

d
ia

n
s

1.
3

as
in

S
h

or
th

an
d

n
ot

at
io

n
fo

r
th

e
”a

rc
si

n
”

fu
n

ct
io

n
1.

3
ac

os
S

h
or

th
an

d
n

ot
at

io
n

fo
r

th
e

”a
rc

co
s”

fu
n

ct
io

n
1.

3
at

an
S

h
or

th
an

d
n

ot
at

io
n

fo
r

th
e

”a
rc

ta
n

”
fu

n
ct

io
n

1.
3

ac
sc

S
h

or
th

an
d

n
ot

at
io

n
fo

r
th

e
”a

rc
cs

c”
fu

n
ct

io
n

1.
3

as
ec

S
h

or
th

an
d

n
ot

at
io

n
fo

r
th

e
”a

rc
se

c”
fu

n
ct

io
n

1.
3

ac
ot

S
h

or
th

an
d

n
ot

at
io

n
fo

r
th

e
”a

rc
co

t”
fu

n
ct

io
n

1.
4

p
lo

t
P

lo
ts

a
gi

ve
n

si
n

gl
e-

va
ri

ab
le

fu
n

ct
io

n
in

th
e

co
or

d
in

at
e

p
la

n
e

1.
4

ab
s

R
et

u
rn

s
th

e
ab

so
lu

te
va

lu
e

of
a

re
al

n
u

m
b

er

F. INDEX OF COMMANDS BY NAME AND BY SECTION 327

1.
4

p
oi

n
t

U
se

d
to

id
en

ti
fy

/m
ar

k
a

si
n

gl
e

p
oi

n
t

in
a

p
lo

t,
b
y

m
ak

in
g

a
la

rg
e

d
ot

th
er

e
1.

4.
2

sh
ow

U
se

d
w

h
en

su
p

er
im

p
os

in
g

a
la

rg
e

n
u

m
b

er
of

p
lo

ts
on

to
p

of
on

e
an

ot
h

er
1.

5.
3

m
at

ri
x

U
se

d
to

d
efi

n
e

a
m

at
ri

x
,

gi
ve

n
th

e
n
u

m
b

er
of

ro
w

s,
n
u

m
b

er
of

co
lu

m
n

s,
a
n

d
it

s
en

tr
ie

s
1.

5.
3

rr
ef

C
om

p
u

te
s

th
e

”r
ed

u
ce

d
ro

w
ec

h
el

on
fo

rm
”

of
th

e
gi

v
en

m
at

ri
x

1.
5.

4
p

ri
n
t

U
se

d
to

p
ri

n
t

in
fo

rm
at

io
n

to
th

e
sc

re
en

fo
r

th
e

u
se

r
1.

7
ex

p
an

d
G

iv
es

th
e

ex
p
an

d
ed

fo
rm

of
a

p
ol

y
n

om
ia

l
(o

r
ra

ti
on

al
fu

n
ct

io
n

)
w

it
h

o
u

t
p

ar
en

th
es

es
1.

7
fa

ct
or

G
iv

es
a

fa
ct

or
ed

ve
rs

io
n

of
a

p
ol

y
n

om
ia

l
or

an
in

te
ge

r
1.

7
gc

d
C

om
p

u
te

s
th

e
”g

re
at

es
t

co
m

m
on

d
iv

is
or

”
of

tw
o

p
ol

y
n

om
ia

ls
or

n
u

m
b

er
s

1.
7

d
iv

is
or

s
R

et
u

rn
s

a
li

st
of

al
l

th
e

p
os

it
iv

e
in

te
ge

rs
th

at
d

iv
id

e
in

to
th

e
or

ig
in

al
in

te
g
er

1.
8.

1
so

lv
e

R
et

u
rn

s
a

sy
m

b
ol

ic
so

lu
ti

on
to

an
eq

u
at

io
n

or
sy

st
em

of
eq

u
at

io
n
s

1.
8.

1
va

r
D

ec
la

re
s

a
n

ew
va

ri
ab

le
to

re
p

re
se

n
t

so
m

e
u

n
k
n

ow
n

q
u

an
ti

ty
1.

9
fi

n
d

ro
ot

A
n
u

m
er

ic
al

ap
p

ro
x
im

at
io

n
of
f

(x
)

=
0

1
.1

0
se

ar
ch

d
o
c

S
ea

rc
h

es
S

ag
e

fo
r

al
l

of
th

e
d

o
cu

m
en

ta
ti

on
st

ri
n

gs
re

ga
rd

in
g

th
e

sp
ec

ifi
ed

co
m

m
an

d
1
.1

1
d

iff
T

ak
es

th
e

d
er

iv
at

iv
e

b
y

sp
ec

if
y
in

g
th

e
fu

n
ct

io
n

in
te

rm
s

p
re

d
efi

n
ed

va
ri

-
ab

le
(s

)
1.

11
d

er
iv

at
iv

e
A

sy
n

on
y
m

fo
r

d
iff

1.
12

in
te

gr
al

T
ak

es
th

e
in

te
gr

al
b
y

sp
ec

if
y
in

g
th

e
fu

n
ct

io
n

in
te

rm
s

p
re

d
efi

n
ed

va
ri

a
b

le
(s

)
1.

12
in

te
gr

at
e

A
sy

n
on

y
m

fo
r

in
te

gr
al

1.
12

n
u

m
er

ic
al

in
te

gr
al

C
al

cu
la

te
s

th
e

in
te

gr
al

n
u

m
er

ic
al

ly
,

ou
tp

u
tt

in
g

th
e

b
es

t
gu

es
s

fi
rs

t
an

d
th

e
u

n
ce

rt
ai

n
ty

se
co

n
d

1
.1

2
p

ar
ti

al
fr

ac
ti

on
C

om
p

u
te

s
th

e
p
ar

ti
al

fr
ac

ti
on

s
of

a
co

m
p

li
ca

te
d

ra
ti

on
al

fu
n

ct
io

n
1.

12
er

f
S

ta
n

d
in

g
fo

r
”E

rr
or

F
u

n
ct

io
n
”,

so
m

et
im

es
ca

ll
ed

th
e

G
au

ss
ia

n
or

N
o
rm

a
l

D
is

tr
ib

u
ti

on
1.

12
as

su
m

e
A

ll
ow

s
u

se
r

to
d

ec
la

re
an

as
su

m
p
ti

on

328 F. INDEX OF COMMANDS BY NAME AND BY SECTION

2.
4.

3
lc

m
F

in
d

s
th

e
le

as
t

co
m

m
on

m
u

lt
ip

le
of

tw
o

n
u

m
b

er
s

(S
ee

al
so

4.
6.

1)
2.

6.
1

fa
ct

or
ia

l
T

ak
es

th
e

fa
ct

or
ia

l
of

an
y

n
on

-n
eg

at
iv

e
in

te
ge

r
2.

6.
2

m
o
d

T
ak

e
m

o
d

u
la

r
re

d
u

ct
io

n
on

ly
of

th
e

n
ea

re
st

n
u

m
b

er
(S

ee
al

so
4.

6.
6)

3.
1.

1
ax

es
la

b
el

s
L

ab
el

s
th

e
ax

es
d

ir
ec

tl
y

on
a

gr
ap

h
3.

1.
3

ar
ro

w
D

ra
w

s
an

ar
ro

w
d

ir
ec

tl
y

on
a

gr
ap

h
3.

1.
3

te
x
t

U
se

d
to

ad
d

w
or

d
s

on
to

a
gr

ap
h

3.
3

p
ol

ar
p

lo
t

U
se

d
to

gr
ap

h
a

fu
n
ct

io
n

w
it

h
p

ol
ar

co
or

d
in

at
es

3.
4

im
p

li
ci

t
p

lo
t

T
ak

es
a

fu
n

ct
io

n
w

it
h

tw
o

va
ri

ab
le

s
an

d
p

lo
ts

th
e

gr
ap

h
f

(x
,y

)
=

0
3.

5
co

n
to

u
r

p
lo

t
T

ak
es

a
fu

n
ct

io
n

w
it

h
tw

o
va

ri
ab

le
s

an
d

p
lo

ts
co

n
to

u
r

cu
rv

es
(l

ev
el

se
ts

)
o
f

th
at

fu
n

ct
io

n
3.

5.
1

su
m

U
se

d
to

ta
ke

th
e

su
m

m
at

io
n

of
an

ex
p

re
ss

io
n

(p
ro

p
er

ly
sh

ow
n

in
4.

19
)

3.
6

p
ar

am
et

ri
c

p
lo

t
T

ak
es

tw
o

or
th

re
e

fu
n

ct
io

n
s

an
d

p
lo

ts
a

p
ar

am
et

ri
c

cu
rv

e
3.

7
p

lo
t

ve
ct

or
fi

el
d

T
ak

es
tw

o
fu

n
ct

io
n

s
w

it
h

tw
o

d
iff

er
en

t
va

ri
ab

le
s

an
d

p
lo

ts
ve

ct
or

ar
ro

w
s

3.
7.

1
p

lo
t3

d
C

re
at

es
a

3D
p

lo
t

of
a

tw
o-

va
ri

ab
le

fu
n

ct
io

n
3.

7.
2

v
ec

to
r

C
re

at
es

a
si

n
gl

e
m

at
h

em
at

ic
al

ve
ct

or
3.

7.
2

n
or

m
C

om
p

u
te

s
th

e
n

or
m

(o
r

le
n
gt

h
)

of
a

v
ec

to
r

3.
8

p
lo

t
lo

gl
og

P
lo

ts
a

gi
ve

n
si

n
gl

e-
va

ri
ab

le
fu

n
ct

io
n

in
th

e
co

or
d

in
at

e
p

la
n

e
w

it
h

lo
ga

ri
th

-
m

ic
sc

al
es

3.
8

sc
at

te
r

p
lo

t
P

lo
ts

al
l

of
th

e
p

re
d

efi
n
ed

d
at

a
p

oi
n
ts

on
to

a
gr

ap
h

(s
ee

S
ec

ti
on

4.
9

al
so

)
3.

9.
2

n
th

ro
ot

A
m

et
h

o
d

of
fi

n
d

in
g

th
e

n
th

re
al

ro
ot

(s
ee

S
ec

ti
on

3.
9.

2)
3.

9.
2

si
gn

R
et

u
rn

s
ei

th
er

a
n

eg
at

iv
e

or
p

os
it

iv
e

1
d

ep
en

d
in

g
on

if
x

is
n

eg
at

iv
e

o
r

p
os

it
iv

e,
re

sp
ec

ti
ve

ly
3.

9.
2

re
al

n
th

ro
ot

[C
u

rr
en

tl
y

p
ro

p
os

ed
b

u
t

d
o
es

n
ot

y
et

ex
is

t]
C

om
p

u
te

s
th

e
re

al
n
th

ro
o
t

o
f

a
n
u

m
b

er

F. INDEX OF COMMANDS BY NAME AND BY SECTION 329

4.
4.

2
id

en
ti

ty
m

at
ri

x
C

re
at

es
th

e
id

en
ti

ty
m

at
ri

x
of

si
ze
n

4.
4.

3
so

lv
e

ri
gh

t
S

ol
ve

s
th

e
m

at
ri

x
-v

ec
to

r
p

ro
b

le
m
A
~x

=
~ b

w
h

er
e
~x

is
u

n
k
n

ow
n

.

4
.4

.3
so

lv
e

le
ft

S
ol

ve
s

th
e

m
at

ri
x
-v

ec
to

r
p
ro

b
le

m
~x
A

=
~ b

w
h

er
e
~x

is
u

n
k
n

ow
n

.
4.

4.
3

au
gm

en
t

A
d

d
s

on
to

a
p

re
d

efi
n

ed
m

at
ri

x
4.

4.
3

ec
h

el
on

fo
rm

A
h

al
f-

co
m

p
le

te
d

ve
rs

io
n

of
R

R
E

F
4.

4.
4

in
v
er

se
C

om
p

u
te

s
th

e
in

ve
rs

e
of

a
p

re
d

efi
n

ed
m

at
ri

x

4.
4.

5
le

ft
ke

rn
el

C
om

p
u

te
s

th
e

se
t

of
ve

ct
or

s
n

su
ch

th
at
~n
A

=
~ 0

,
fo

r
a

m
at

ri
x

A

4.
4.

5
ri

gh
t

ke
rn

al
C

om
p

u
te

s
th

e
se

t
of

ve
ct

or
s

n
su

ch
th

at
A
~n

=
~ 0

,
fo

r
a

m
at

ri
x

A

4.
4.

5
ri

gh
t

n
u

ll
it

y
C

om
p

u
te

s
th

e
d

im
en

si
on

of
th

e
se

t
of

ve
ct

or
s

n
su

ch
th

at
A
~n

=
~ 0

,
fo

r
a

m
at

ri
x

A
.

4.
4.

5
le

ft
n
u

ll
it

y
C

om
p

u
te

s
th

e
d

im
en

si
on

of
th

e
se

t
of

ve
ct

or
s

n
su

ch
th

at
~n
A

=
~ 0

,
fo

r
a

m
at

ri
x

A
.

4
.4

.6
d

et
C

al
cu

la
te

s
th

e
d

et
er

m
in

an
t

of
a

p
re

d
efi

n
ed

m
at

ri
x

4
.5

d
ot

p
ro

d
u

ct
C

al
cu

la
te

s
th

e
d

ot
p

ro
d

u
ct

of
a

se
t

of
ve

ct
or

s
4.

5
cr

os
s

p
ro

d
u

ct
C

al
cu

la
te

s
th

e
cr

os
s

p
ro

d
u

ct
of

a
se

t
of

ve
ct

or
s

4.
6

n
ex

t
p

ri
m

e
F

in
d

s
th

e
n

ex
t

p
ri

m
e

n
u

m
b

er
gr

ea
te

r
th

an
n

4
.6

is
p

ri
m

e
T

es
t

th
e

n
u

m
b

er
fo

r
p

ri
m

al
it

y
4.

6
p

ri
m

e
ra

n
ge

R
et

u
rn

s
al

l
of

th
e

p
ri

m
e

n
u

m
b

er
s

b
et

w
ee

n
th

e
d

es
ir

ed
ra

n
ge

4.
6.

1
lc

m
F

in
d

s
th

e
le

as
t

co
m

m
on

m
u

lt
ip

le
of

tw
o

n
u

m
b

er
s

(S
ee

al
so

2.
4.

3)
4.

6.
2

n
th

p
ri

m
e

U
se

d
to

fi
n

d
th

e
n

th
p

ri
m

e
n
u

m
b

er
4.

6.
3

eu
le

r
p

h
i

R
et

u
rn

s
h

ow
m

an
y

p
os

it
iv

e
in

te
ge

rs
(f

ro
m

1
to
n

)
ar

e
co

p
ri

m
e

to
n

.
4.

6.
4

si
gm

a
R

et
u

rn
s

th
e

su
m

of
th

e
p

os
it

iv
e

in
te

ge
rs

w
h

ic
h

d
iv

id
e

th
e

gi
ve

n
p

o
si

ti
ve

in
te

ge
r

4
.6

.4
le

n
R

et
u

rn
s

th
e

le
n

gt
h

of
an

y
li

st
4.

6.
6

m
o
d

T
ak

e
m

o
d

u
la

r
re

d
u

ct
io

n
on

ly
of

th
e

n
ea

re
st

n
u

m
b

er
(S

ee
al

so
2.

6.
2)

4.
7

m
in

R
et

u
rn

s
th

e
sm

al
le

st
n
u

m
b

er
in

th
e

li
st

330 F. INDEX OF COMMANDS BY NAME AND BY SECTION

4.
7

m
ax

R
et

u
rn

s
th

e
la

rg
es

t
n
u

m
b

er
in

th
e

li
st

4.
7.

1
fl

o
or

S
om

et
im

es
ca

ll
ed

T
h

e
G

re
at

es
t

In
te

ge
r

F
u

n
ct

io
n

,
th

is
fu

n
ct

io
n

ro
u

n
d

s
x

d
ow

n
4
.7

.1
ce

il
S

om
et

im
es

ca
ll

ed
T

h
e

L
ea

st
In

te
ge

r
F

u
n

ct
io

n
,

th
is

fu
n

ct
io

n
ro

u
n

d
s
x

u
p

4
.7

.2
b

in
om

ia
l

C
om

p
u

te
s

th
e

b
in

om
ia

l
co

effi
ci

en
t

or
”c

h
o
os

e”
fu

n
ct

io
n

fo
r

co
m

b
in

at
io

n
s

4.
7.

2
li

st
R

et
u

rn
s

a
li

st
of

w
h

at
is

b
ei

n
g

as
ke

d
4.

7.
2

P
er

m
u

ta
ti

on
s

T
h

e
in

p
u

t
is

a
li

st
of

it
em

s;
th

e
ou

tp
u

t
is

a
li

st
of

al
l

p
os

si
b
le

p
er

m
u

ta
ti

o
n

s
of

th
at

li
st

.
4.

7.
3

si
n

h
C

al
ls

th
e

h
y
p

er
b

ol
ic

tr
ig

on
om

et
ri

c
fu

n
ct

io
n

of
si

n
e

in
ra

d
ia

n
s

4.
7.

4
co

sh
C

al
ls

th
e

h
y
p

er
b

ol
ic

tr
ig

on
om

et
ri

c
fu

n
ct

io
n

of
co

si
n

e
in

ra
d

ia
n

s
4.

7.
5

ta
n

h
C

al
ls

th
e

h
y
p

er
b

ol
ic

tr
ig

on
om

et
ri

c
fu

n
ct

io
n

of
ta

n
ge

n
t

in
ra

d
ia

n
s

4.
7.

5
co

th
C

al
ls

th
e

h
y
p

er
b

ol
ic

tr
ig

on
om

et
ri

c
fu

n
ct

io
n

of
co

ta
n

ge
n
t

in
ra

d
ia

n
s

4.
7.

5
se

ch
C

al
ls

th
e

h
y
p

er
b

ol
ic

tr
ig

on
om

et
ri

c
fu

n
ct

io
n

of
se

ca
n
t

in
ra

d
ia

n
s

4.
7.

5
cs

ch
C

al
ls

th
e

h
y
p

er
b

ol
ic

tr
ig

on
om

et
ri

c
fu

n
ct

io
n

of
co

se
ca

n
t

in
ra

d
ia

n
s

4.
7.

5
ar

cs
in

h
C

al
ls

th
e

in
ve

rs
e

h
y
p

er
b

ol
ic

tr
ig

on
om

et
ri

c
fu

n
ct

io
n

of
si

n
e

in
ra

d
ia

n
s

4.
7.

5
ar

cc
os

h
C

al
ls

th
e

in
ve

rs
e

h
y
p

er
b

ol
ic

tr
ig

on
om

et
ri

c
fu

n
ct

io
n

of
co

si
n

e
in

ra
d

ia
n

s
4.

7.
5

ar
ct

an
h

C
al

ls
th

e
in

v
er

se
h
y
p

er
b

ol
ic

tr
ig

on
om

et
ri

c
fu

n
ct

io
n

of
ta

n
ge

n
t

in
ra

d
ia

n
s

4.
7.

5
ar

cc
ot

h
C

al
ls

th
e

in
ve

rs
e

h
y
p

er
b

ol
ic

tr
ig

on
om

et
ri

c
fu

n
ct

io
n

of
co

ta
n

ge
n
t

in
ra

d
ia

n
s

4.
7.

5
ar

cs
ec

h
C

al
ls

th
e

in
ve

rs
e

h
y
p

er
b

ol
ic

tr
ig

on
om

et
ri

c
fu

n
ct

io
n

of
se

ca
n
t

in
ra

d
ia

n
s

4.
7.

5
ar

cc
sc

h
C

al
ls

th
e

in
ve

rs
e

h
y
p

er
b

ol
ic

tr
ig

on
om

et
ri

c
fu

n
ct

io
n

of
co

se
ca

n
t

in
ra

d
ia

n
s

4.
7.

5
as

in
h

S
h

or
th

an
d

n
ot

at
io

n
fo

r
th

e
”a

rc
si

n
h

”
fu

n
ct

io
n

4.
7.

5
ac

os
h

S
h

or
th

an
d

n
ot

at
io

n
fo

r
th

e
”a

rc
co

sh
”

fu
n

ct
io

n
4.

7.
5

at
an

h
S

h
or

th
an

d
n

ot
at

io
n

fo
r

th
e

”a
rc

ta
n

h
”

fu
n

ct
io

n
4.

7.
5

ac
ot

h
S

h
or

th
an

d
n

ot
at

io
n

fo
r

th
e

”a
rc

co
th

”
fu

n
ct

io
n

4.
7.

5
as

ec
h

S
h

or
th

an
d

n
ot

at
io

n
fo

r
th

e
”a

rc
se

ch
”

fu
n

ct
io

n
4.

7.
5

ac
sc

h
S

h
or

th
an

d
n

ot
at

io
n

fo
r

th
e

”a
rc

cs
ch

”
fu

n
ct

io
n

4.
8

li
m

it
U

se
d

to
ta

ke
th

e
li

m
it

of
a

fu
n

ct
io

n

F. INDEX OF COMMANDS BY NAME AND BY SECTION 331

4.
9

sc
at

te
r

p
lo

t
P

lo
ts

al
l

of
th

e
p

re
d

efi
n
ed

d
at

a
p

oi
n
ts

on
to

a
gr

ap
h

(s
ee

S
ec

ti
on

4.
9

al
so

)
4.

10
fi

n
d

fi
t

F
in

d
s

th
e

b
es

t
fi

t
li

n
e

fo
r

a
li

st
of

d
at

a
p

oi
n
ts

4.
11

h
ex

C
on

ve
rt

s
th

e
n
u

m
b

er
in

to
h

ex
ad

ec
im

al
4.

11
b

in
C

on
ve

rt
s

th
e

n
u

m
b

er
in

to
b

in
ar

y
4.

11
o
ct

C
on

ve
rt

s
th

e
n
u

m
b

er
in

to
o
ct

al
4.

11
in

t
R

ou
n

d
s

d
ow

n
to

th
e

n
ea

re
st

in
te

ge
r

4.
12

su
d

ok
u

F
in

d
s

a
so

lu
ti

on
to

th
e

su
d

ok
u

p
u

zz
le

4.
13

ti
m

ei
t

T
im

es
h

ow
lo

n
g

it
ta

ke
s

S
ag

e
to

ca
lc

u
la

te
th

e
so

lu
ti

on
4.

15
la

te
x

R
et

u
rn

s
th

e
so

lu
ti

on
w

ri
tt

en
in

LA
T
E
X

4.
16

.2
ei

ge
n
va

lu
es

C
al

cu
la

te
s

th
e

ei
ge

n
va

lu
es

co
rr

es
p

on
d

in
g

to
a

li
n

ea
r

sy
st

em
of

eq
u

at
io

n
s

4.
16

.2
ei

ge
n
ve

ct
or

s
ri

gh
t

G
iv

en
A

,
re

tu
rn

s
a

ve
ct

or
~v

su
ch

th
at
A
~v

=
k
~v

fo
r

so
m

e
sc

al
ar

co
n

st
an

t
k
.

4.
16

.2
ei

ge
n
ve

ct
or

s
le

ft
G

iv
en

A
,

re
tu

rn
s

a
ve

ct
or
~v

su
ch

th
at
~v
A

=
k
~v

fo
r

so
m

e
sc

al
ar

co
n

st
an

t
k
.

4.
16

.2
ch

ar
p

ol
y

C
al

cu
la

te
s

th
e

ch
ar

ac
te

ri
st

ic
p

ol
y
n

om
ia

l
4.

16
.2

m
in

p
ol

y
C

al
cu

la
te

s
th

e
m

in
im

u
m

p
ol

y
n

om
ia

l
4.

16
.3

as
su

m
of

p
er

m
u

ta
ti

on
s

T
h

is
fu

n
ct

io
n

is
on

e
of

14
b

u
il

t-
in

m
at

ri
x

fa
ct

or
iz

at
io

n
s.

4.
16

.3
ch

ol
es

k
y

T
h

is
fu

n
ct

io
n

is
on

e
of

14
b

u
il

t-
in

m
at

ri
x

fa
ct

or
iz

at
io

n
s.

4.
16

.3
fr

ob
en

iu
s

T
h

is
fu

n
ct

io
n

is
on

e
of

14
b

u
il

t-
in

m
at

ri
x

fa
ct

or
iz

at
io

n
s.

4.
16

.3
gr

am
sc

h
m

id
t

T
h

is
fu

n
ct

io
n

is
on

e
of

14
b

u
il

t-
in

m
at

ri
x

fa
ct

or
iz

at
io

n
s.

4.
16

.3
h

es
se

n
b

er
g

fo
rm

T
h

is
fu

n
ct

io
n

is
on

e
of

14
b

u
il

t-
in

m
at

ri
x

fa
ct

or
iz

at
io

n
s.

4.
16

.3
h

er
m

it
e

fo
rm

T
h

is
fu

n
ct

io
n

is
on

e
of

14
b

u
il

t-
in

m
at

ri
x

fa
ct

or
iz

at
io

n
s.

4.
16

.3
jo

rd
an

fo
rm

T
h

is
fu

n
ct

io
n

is
on

e
of

14
b

u
il

t-
in

m
at

ri
x

fa
ct

or
iz

at
io

n
s.

4.
16

.3
L

U
T

h
is

fu
n

ct
io

n
is

on
e

of
14

b
u

il
t-

in
m

at
ri

x
fa

ct
or

iz
at

io
n

s.
4.

16
.3

Q
R

T
h

is
fu

n
ct

io
n

is
on

e
of

14
b

u
il

t-
in

m
at

ri
x

fa
ct

or
iz

at
io

n
s.

4.
16

.3
ra

ti
on

al
fo

rm
T

h
is

fu
n

ct
io

n
is

on
e

of
14

b
u

il
t-

in
m

at
ri

x
fa

ct
or

iz
at

io
n

s.
4.

16
.3

sm
it

h
fo

rm
T

h
is

fu
n

ct
io

n
is

on
e

of
14

b
u

il
t-

in
m

at
ri

x
fa

ct
or

iz
at

io
n

s.
4.

16
.3

sy
m

p
le

ct
ic

fo
rm

T
h

is
fu

n
ct

io
n

is
on

e
of

14
b

u
il

t-
in

m
at

ri
x

fa
ct

or
iz

at
io

n
s.

332 F. INDEX OF COMMANDS BY NAME AND BY SECTION

4.
16

.3
w

ea
k

p
op

ov
fo

rm
T

h
is

fu
n

ct
io

n
is

on
e

of
14

b
u

il
t-

in
m

at
ri

x
fa

ct
or

iz
at

io
n

s.
4.

16
.3

zi
gz

ag
fo

rm
T

h
is

fu
n

ct
io

n
is

on
e

of
14

b
u

il
t-

in
m

at
ri

x
fa

ct
or

iz
at

io
n

s.
4.

16
.4

tr
an

sp
os

e
F

in
d

s
th

e
tr

an
sp

os
e

of
a

p
ar

ti
cu

la
r

m
at

ri
x

4.
17

.1
ta

y
lo

r
C

al
cu

la
te

s
th

e
T

ay
lo

r
P

ol
y
n

om
ia

l
ap

p
ro

x
im

at
io

n
of

a
fu

n
ct

io
n

4.
18

.1
m

in
im

iz
e

F
in

d
s

th
e

m
in

im
a

of
a

fu
n

ct
io

n
4.

19
su

m
U

se
d

to
ta

ke
th

e
su

m
m

at
io

n
of

an
ex

p
re

ss
io

n
(fi

rs
t

sh
ow

n
in

3.
5.

1)
4.

21
.1

M
ix

ed
In

te
ge

rL
in

ea
rP

ro
gr

am
U

se
d

to
in

it
ia

li
ze

ei
th

er
a

li
n

ea
r

p
ro

gr
am

or
m

ix
ed

in
te

ge
r

li
n

ea
r

p
ro

gr
a
m

4.
21

.1
n

ew
va

ri
ab

le
U

se
d

to
cr

ea
te

an
in

fi
n

it
e

se
t

of
va

ri
ab

le
s

fo
r

li
n

ea
r

p
ro

gr
am

m
in

g
4.

21
.1

ad
d

co
n

st
ra

in
t

U
se

d
to

ad
d

th
e

co
n

st
ra

in
ts

to
a

li
n

ea
r

p
ro

gr
am

4.
21

.1
se

t
ob

je
ct

iv
e

U
se

d
to

se
t

th
e

ob
je

ct
iv

e
to

a
li

n
ea

r
p

ro
gr

am
4.

21
.1

ge
t

va
lu

es
U

se
d

to
ob

ta
in

th
e

va
lu

es
of

va
ri

ab
le

s
in

a
li

n
ea

r
p

ro
gr

am
4.

21
.2

re
m

ov
e

co
n

st
ra

in
t

U
se

d
to

re
m

ov
e

a
co

n
st

ra
in

t
fr

om
a

li
n

ea
r

p
ro

gr
am

4.
22

.1
fu

n
ct

io
n

D
ec

la
re

s
a

n
ew

u
n

k
n

ow
n

fu
n

ct
io

n
4.

22
.1

d
es

ol
v
e

U
se

d
w

h
en

so
lv

in
g

fo
r

a
fi

rs
t

or
se

co
n

d
or

d
er

li
n

ea
r

or
d

in
ar

y
d

iff
er

en
ti

a
l

eq
u

at
io

n
4.

22
.3

p
lo

t
sl

op
e

fi
el

d
G

en
er

at
es

a
sl

op
e

fi
el

d
p

lo
t

of
th

e
d

es
ir

ed
fu

n
ct

io
n

4.
23

.1
la

p
la

ce
C

al
cu

la
te

s
th

e
L

ap
la

ce
tr

an
sf

or
m

4.
23

.3
in

v
er

se
la

p
la

ce
C

al
cu

la
te

s
th

e
in

ve
rs

e
L

ap
la

ce
tr

an
sf

or
m

5.
1.

1
fo

r
U

se
d

to
cr

ea
te

a
’f

or
lo

op
’

st
at

em
en

t
5.

1.
1

ra
n

ge
U

se
d

as
a

sh
or

tc
u

t
fo

r
m

ak
in

g
a

li
st

of
n
u

m
b

er
s

5.
2.

1
d

ef
U

se
d

to
d

efi
n

e
a

n
ew

su
b

ro
u

ti
n

e
5.

3.
6

re
tu

rn
R

et
u

rn
s

w
h

at
is

b
ei

n
g

as
ke

d
5.

4.
1

if
U

se
d

fo
r

cr
ea

ti
n

g
’i

f-
th

en
’

st
at

em
en

ts
5.

5.
1

ra
is

e
U

se
d

to
ca

u
se

an
ex

ce
p

ti
on

w
h

en
d

ea
li

n
g

w
it

h
er

ro
rs

5.
5.

1
R

u
n
ti

m
eE

rr
or

U
se

d
to

sp
ec

if
y

if
th

er
e

is
an

er
ro

r
w

h
en

u
si

n
g

th
e

su
b

ro
u

ti
n
e

F. INDEX OF COMMANDS BY NAME AND BY SECTION 333

5.
5.

2
el

se
U

se
d

in
co

n
ju

n
ct

io
n

w
it

h
th

e
’i

f-
th

en
’

st
at

em
en

t,
it

h
an

d
le

s
w

h
en

th
e

’i
f’

st
at

em
en

t
is

fa
ls

e
5.

6.
1

w
h

il
e

U
se

d
w

h
en

cr
ea

ti
n

g
a

’w
h

il
e

lo
op

’
st

at
em

en
t

5.
6.

3
b

re
ak

E
x
it

s
th

e
cu

rr
en

t
lo

op
st

at
em

en
t

5.
7.

1
ap

p
en

d
A

d
d

s
a

n
ew

it
em

to
th

e
en

d
of

th
e

li
st

5.
7.

3
in

R
et

u
rn

s
tr

u
e

or
fa

ls
e,

to
te

st
if

an
el

em
en

t
is

in
a

gi
ve

n
se

t,
or

n
ot

.
5.

7.
3

re
m

ov
e

R
em

ov
es

an
it

em
fr

om
th

e
li

st
5.

7.
3

p
ro

d
M

u
lt

ip
li

es
al

l
of

th
e

el
em

en
ts

in
th

e
li

st
5.

7.
3

sh
u

ffl
e

R
an

d
om

iz
es

al
l

of
th

e
el

em
en

ts
in

th
e

li
st

5.
7.

5
or

C
om

p
ar

es
tw

o
lo

gi
c

st
at

em
en

ts
to

ch
ec

k
if

ei
th

er
-o

r
st

at
em

en
ts

ar
e

tr
u

e
5.

7.
5

an
d

C
om

p
ar

es
tw

o
lo

gi
c

st
at

em
en

ts
to

ch
ec

k
if

b
ot

h
st

at
em

en
ts

ar
e

tr
u

e
5.

7.
10

rh
s

G
iv

en
an

eq
u

at
io

n
,

th
is

re
tu

rn
s

th
e

”r
ig

h
t

h
an

d
si

d
e”

of
th

at
eq

u
at

io
n

a
s

a
n

ex
p

re
ss

io
n

5.
7.

10
lh

s
G

iv
en

an
eq

u
at

io
n

,
th

is
re

tu
rn

s
th

e
”l

ef
t

h
an

d
si

d
e”

of
th

at
eq

u
at

io
n

a
s

a
n

ex
p

re
ss

io
n

6.
1

@
in

te
ra

ct
T

el
ls

S
ag

e
yo

u
w

an
t

an
in

te
ra

ct
(i

n
te

ra
ct

iv
e

w
eb

p
ag

e)
cr

ea
te

d
6.

1
sl

id
er

C
re

at
es

a
sl

id
er

fo
r

a
su

b
ro

u
ti

n
e’

s
in

p
u

t
in

an
in

te
ra

ct
iv

e
w

eb
p
ag

e
6.

5
se

le
ct

or
C

re
at

es
a

sm
al

l
p

u
ll

-d
ow

n
m

en
u

in
an

in
te

ra
ct

iv
e

w
eb

p
ag

e,
th

at
a

u
se

r
ca

n
ch

o
os

e
an

it
em

fr
om

C
im

p
li

ci
t

m
u

lt
ip

li
ca

ti
on

A
ll

ow
s

y
ou

to
u

se
5
x
+
6
y

in
p

la
ce

of
th

e
u

su
al

5
*
x
+
6
*
y

334 F. INDEX OF COMMANDS BY NAME AND BY SECTION

S
ec

ti
on

C
om

m
an

d
D

es
cr

ip
ti

on

6.
1

@
in

te
ra

ct
T

el
ls

S
ag

e
yo

u
w

an
t

an
in

te
ra

ct
(i

n
te

ra
ct

iv
e

w
eb

p
ag

e)
cr

ea
te

d
1.

4
ab

s
R

et
u

rn
s

th
e

ab
so

lu
te

va
lu

e
of

a
re

al
n
u

m
b

er
1.

3
ac

os
S

h
or

th
an

d
n

ot
at

io
n

fo
r

th
e

”a
rc

co
s”

fu
n

ct
io

n
4.

7.
5

ac
os

h
S

h
or

th
an

d
n

ot
at

io
n

fo
r

th
e

”a
rc

co
sh

”
fu

n
ct

io
n

1.
3

ac
ot

S
h

or
th

an
d

n
ot

at
io

n
fo

r
th

e
”a

rc
co

t”
fu

n
ct

io
n

4.
7.

5
ac

ot
h

S
h

or
th

an
d

n
ot

at
io

n
fo

r
th

e
”a

rc
co

th
”

fu
n

ct
io

n
1.

3
ac

sc
S

h
or

th
an

d
n

ot
at

io
n

fo
r

th
e

”a
rc

cs
c”

fu
n

ct
io

n
4.

7.
5

ac
sc

h
S

h
or

th
an

d
n

ot
at

io
n

fo
r

th
e

”a
rc

cs
ch

”
fu

n
ct

io
n

4.
21

.1
ad

d
co

n
st

ra
in

t
U

se
d

to
ad

d
th

e
co

n
st

ra
in

ts
to

a
li

n
ea

r
p

ro
gr

am
5.

7.
5

an
d

C
om

p
ar

es
tw

o
lo

gi
c

st
at

em
en

ts
to

ch
ec

k
if

b
ot

h
st

at
em

en
ts

ar
e

tr
u

e
5.

7.
1

ap
p

en
d

A
d

d
s

a
n

ew
it

em
to

th
e

en
d

of
th

e
li

st
1.

3
ar

cc
os

C
al

ls
th

e
in

ve
rs

e
tr

ig
on

om
et

ri
c

fu
n

ct
io

n
of

co
si

n
e

in
ra

d
ia

n
s

4.
7.

5
ar

cc
os

h
C

al
ls

th
e

in
ve

rs
e

h
y
p

er
b

ol
ic

tr
ig

on
om

et
ri

c
fu

n
ct

io
n

of
co

si
n

e
in

ra
d

ia
n

s
1.

3
ar

cc
ot

C
al

ls
th

e
in

ve
rs

e
tr

ig
on

om
et

ri
c

fu
n

ct
io

n
of

co
ta

n
ge

n
t

in
ra

d
ia

n
s

4.
7.

5
ar

cc
ot

h
C

al
ls

th
e

in
ve

rs
e

h
y
p

er
b

ol
ic

tr
ig

on
om

et
ri

c
fu

n
ct

io
n

of
co

ta
n

ge
n
t

in
ra

d
ia

n
s

1.
3

ar
cc

sc
C

al
ls

th
e

in
ve

rs
e

tr
ig

on
om

et
ri

c
fu

n
ct

io
n

of
co

se
ca

n
t

in
ra

d
ia

n
s

4.
7.

5
ar

cc
sc

h
C

al
ls

th
e

in
ve

rs
e

h
y
p

er
b

ol
ic

tr
ig

on
om

et
ri

c
fu

n
ct

io
n

of
co

se
ca

n
t

in
ra

d
ia

n
s

1.
3

ar
cs

ec
C

al
ls

th
e

in
ve

rs
e

tr
ig

on
om

et
ri

c
fu

n
ct

io
n

of
se

ca
n
t

in
ra

d
ia

n
s

4.
7.

5
ar

cs
ec

h
C

al
ls

th
e

in
ve

rs
e

h
y
p

er
b

ol
ic

tr
ig

on
om

et
ri

c
fu

n
ct

io
n

of
se

ca
n
t

in
ra

d
ia

n
s

1.
3

ar
cs

in
C

al
ls

th
e

in
ve

rs
e

tr
ig

on
om

et
ri

c
fu

n
ct

io
n

of
si

n
e

in
ra

d
ia

n
s

4.
7.

5
ar

cs
in

h
C

al
ls

th
e

in
ve

rs
e

h
y
p

er
b

ol
ic

tr
ig

on
om

et
ri

c
fu

n
ct

io
n

of
si

n
e

in
ra

d
ia

n
s

1.
3

ar
ct

an
C

al
ls

th
e

in
ve

rs
e

tr
ig

on
om

et
ri

c
fu

n
ct

io
n

of
ta

n
ge

n
t

in
ra

d
ia

n
s

4.
7.

5
ar

ct
an

h
C

al
ls

th
e

in
v
er

se
h
y
p

er
b

ol
ic

tr
ig

on
om

et
ri

c
fu

n
ct

io
n

of
ta

n
ge

n
t

in
ra

d
ia

n
s

3.
1.

3
ar

ro
w

D
ra

w
s

an
ar

ro
w

d
ir

ec
tl

y
on

a
gr

ap
h

4.
16

.3
as

su
m

of
p

er
m

u
ta

ti
on

s
T

h
is

fu
n

ct
io

n
is

on
e

of
14

b
u

il
t-

in
m

at
ri

x
fa

ct
or

iz
at

io
n

s.

F. INDEX OF COMMANDS BY NAME AND BY SECTION 335

1.
3

as
ec

S
h

or
th

an
d

n
ot

at
io

n
fo

r
th

e
”a

rc
se

c”
fu

n
ct

io
n

4.
7.

5
as

ec
h

S
h

or
th

an
d

n
ot

at
io

n
fo

r
th

e
”a

rc
se

ch
”

fu
n

ct
io

n
1.

3
as

in
S

h
or

th
an

d
n

ot
at

io
n

fo
r

th
e

”a
rc

si
n

”
fu

n
ct

io
n

4.
7.

5
as

in
h

S
h

or
th

an
d

n
ot

at
io

n
fo

r
th

e
”a

rc
si

n
h

”
fu

n
ct

io
n

1.
12

as
su

m
e

A
ll
ow

s
u

se
r

to
d

ec
la

re
an

as
su

m
p
ti

on
1.

3
at

an
S

h
or

th
an

d
n

ot
at

io
n

fo
r

th
e

”a
rc

ta
n

”
fu

n
ct

io
n

4.
7.

5
at

an
h

S
h

or
th

an
d

n
ot

at
io

n
fo

r
th

e
”a

rc
ta

n
h

”
fu

n
ct

io
n

4.
4.

3
au

gm
en

t
A

d
d

s
on

to
a

p
re

d
efi

n
ed

m
at

ri
x

3.
1.

1
ax

es
la

b
el

s
L

ab
el

s
th

e
ax

es
d

ir
ec

tl
y

on
a

gr
ap

h
4.

11
b

in
C

on
ve

rt
s

th
e

n
u

m
b

er
in

to
b

in
ar

y
4.

7.
2

b
in

om
ia

l
C

om
p

u
te

s
th

e
b

in
om

ia
l

co
effi

ci
en

t
or

”c
h

o
os

e”
fu

n
ct

io
n

fo
r

co
m

b
in

at
io

n
s

5.
6.

3
b

re
ak

E
x
it

s
th

e
cu

rr
en

t
lo

op
st

at
em

en
t

4.
7.

1
ce

il
S

om
et

im
es

ca
ll

ed
T

h
e

L
ea

st
In

te
ge

r
F

u
n

ct
io

n
,

th
is

fu
n

ct
io

n
ro

u
n

d
s
x

u
p

4.
16

.2
ch

ar
p

ol
y

C
al

cu
la

te
s

th
e

ch
ar

ac
te

ri
st

ic
p

ol
y
n

om
ia

l
4.

16
.3

ch
ol

es
k
y

T
h

is
fu

n
ct

io
n

is
on

e
of

14
b

u
il

t-
in

m
at

ri
x

fa
ct

or
iz

at
io

n
s.

3.
5

co
n
to

u
r

p
lo

t
T

ak
es

a
fu

n
ct

io
n

w
it

h
tw

o
va

ri
ab

le
s

an
d

p
lo

ts
co

n
to

u
r

cu
rv

es
(l

ev
el

se
ts

)
o
f

th
at

fu
n

ct
io

n
1
.3

co
s

C
al

ls
th

e
tr

ig
on

om
et

ri
c

fu
n

ct
io

n
”c

os
in

e”
in

ra
d

ia
n

s
4.

7.
4

co
sh

C
al

ls
th

e
h
y
p

er
b

ol
ic

tr
ig

on
om

et
ri

c
fu

n
ct

io
n

of
co

si
n

e
in

ra
d

ia
n

s
1.

3
co

t
C

al
ls

th
e

tr
ig

on
om

et
ri

c
fu

n
ct

io
n

”c
ot

an
ge

n
t”

in
ra

d
ia

n
s

4.
7.

5
co

th
C

al
ls

th
e

h
y
p

er
b

ol
ic

tr
ig

on
om

et
ri

c
fu

n
ct

io
n

of
co

ta
n

ge
n
t

in
ra

d
ia

n
s

4.
5

cr
os

s
p

ro
d

u
ct

C
al

cu
la

te
s

th
e

cr
os

s
p

ro
d

u
ct

of
a

se
t

of
ve

ct
or

s
1.

3
cs

c
C

al
ls

th
e

tr
ig

on
om

et
ri

c
fu

n
ct

io
n

”c
os

ec
an

t”
in

ra
d

ia
n

s
4.

7.
5

cs
ch

C
al

ls
th

e
h
y
p

er
b

ol
ic

tr
ig

on
om

et
ri

c
fu

n
ct

io
n

of
co

se
ca

n
t

in
ra

d
ia

n
s

5.
2.

1
d

ef
U

se
d

to
d

efi
n

e
a

n
ew

su
b

ro
u

ti
n

e
1.

11
d

er
iv

at
iv

e
A

sy
n

on
y
m

fo
r

d
iff

336 F. INDEX OF COMMANDS BY NAME AND BY SECTION

4.
22

.1
d

es
ol

v
e

U
se

d
w

h
en

so
lv

in
g

fo
r

a
fi

rs
t

or
se

co
n

d
or

d
er

li
n

ea
r

or
d

in
ar

y
d

iff
er

en
ti

a
l

eq
u

at
io

n
4.

4.
6

d
et

C
al

cu
la

te
s

th
e

d
et

er
m

in
an

t
of

a
p

re
d

efi
n

ed
m

at
ri

x
1.

11
d

iff
T

ak
es

th
e

d
er

iv
at

iv
e

b
y

sp
ec

if
y
in

g
th

e
fu

n
ct

io
n

in
te

rm
s

p
re

d
efi

n
ed

va
ri

-
ab

le
(s

)
1.

7
d

iv
is

or
s

R
et

u
rn

s
a

li
st

of
al

l
th

e
p

os
it

iv
e

in
te

ge
rs

th
at

d
iv

id
e

in
to

th
e

or
ig

in
al

in
te

g
er

4.
5

d
ot

p
ro

d
u

ct
C

al
cu

la
te

s
th

e
d

ot
p

ro
d

u
ct

of
a

se
t

of
ve

ct
or

s
4.

4.
3

ec
h

el
on

fo
rm

A
h

al
f-

co
m

p
le

te
d

ve
rs

io
n

of
R

R
E

F
4.

16
.2

ei
ge

n
va

lu
es

C
al

cu
la

te
s

th
e

ei
ge

n
va

lu
es

co
rr

es
p

on
d

in
g

to
a

li
n

ea
r

sy
st

em
of

eq
u

at
io

n
s

4.
16

.2
ei

ge
n
ve

ct
or

s
le

ft
G

iv
en

A
,

re
tu

rn
s

a
ve

ct
or
~v

su
ch

th
at
~v
A

=
k
~v

fo
r

so
m

e
sc

al
ar

co
n

st
an

t
k
.

4.
16

.2
ei

ge
n
ve

ct
or

s
ri

gh
t

G
iv

en
A

,
re

tu
rn

s
a

ve
ct

or
~v

su
ch

th
at
A
~v

=
k
~v

fo
r

so
m

e
sc

al
ar

co
n

st
an

t
k
.

5.
5.

2
el

se
U

se
d

in
co

n
ju

n
ct

io
n

w
it

h
th

e
’i

f-
th

en
’

st
at

em
en

t,
it

h
an

d
le

s
w

h
en

th
e

’i
f’

st
at

em
en

t
is

fa
ls

e
1.

12
er

f
S

ta
n

d
in

g
fo

r
”E

rr
or

F
u

n
ct

io
n
”,

so
m

et
im

es
ca

ll
ed

th
e

G
au

ss
ia

n
or

N
o
rm

a
l

D
is

tr
ib

u
ti

on
4.

6.
3

eu
le

r
p

h
i

R
et

u
rn

s
h

ow
m

an
y

p
os

it
iv

e
in

te
ge

rs
(f

ro
m

1
to
n

)
ar

e
co

p
ri

m
e

to
n

.
1.

2
ex

p
A

n
ab

b
re

v
ia

te
d

n
ot

at
io

n
w

h
en

d
ea

li
n

g
w

it
h

ex
p

on
en

ti
al

s,
n

am
el

y
ex

1.
7

ex
p

an
d

G
iv

es
th

e
ex

p
an

d
ed

fo
rm

of
a

p
ol

y
n

om
ia

l
(o

r
ra

ti
on

al
fu

n
ct

io
n

)
w

it
h

o
u

t
p

ar
en

th
es

es
1.

7
fa

ct
or

G
iv

es
a

fa
ct

or
ed

ve
rs

io
n

of
a

p
ol

y
n

om
ia

l
or

an
in

te
ge

r
2.

6.
1

fa
ct

or
ia

l
T

ak
es

th
e

fa
ct

or
ia

l
of

an
y

n
on

-n
eg

at
iv

e
in

te
ge

r
4.

10
fi

n
d

fi
t

F
in

d
s

th
e

b
es

t
fi

t
li

n
e

fo
r

a
li

st
of

d
at

a
p

oi
n
ts

1.
9

fi
n

d
ro

ot
A

n
u

m
er

ic
al

ap
p

ro
x
im

at
io

n
of
f

(x
)

=
0

4
.7

.1
fl

o
or

S
om

et
im

es
ca

ll
ed

T
h

e
G

re
at

es
t

In
te

ge
r

F
u

n
ct

io
n

,
th

is
fu

n
ct

io
n

ro
u

n
d

s
x

d
ow

n
5.

1.
1

fo
r

U
se

d
to

cr
ea

te
a

’f
or

lo
op

’
st

at
em

en
t

4.
16

.3
fr

ob
en

iu
s

T
h

is
fu

n
ct

io
n

is
on

e
of

14
b

u
il

t-
in

m
at

ri
x

fa
ct

or
iz

at
io

n
s.

F. INDEX OF COMMANDS BY NAME AND BY SECTION 337

4.
22

.1
fu

n
ct

io
n

D
ec

la
re

s
a

n
ew

u
n

k
n

ow
n

fu
n

ct
io

n
1.

7
gc

d
C

om
p

u
te

s
th

e
”g

re
at

es
t

co
m

m
on

d
iv

is
or

”
of

tw
o

p
ol

y
n

om
ia

ls
or

n
u

m
b

er
s

4.
21

.1
ge

t
va

lu
es

U
se

d
to

ob
ta

in
th

e
va

lu
es

of
va

ri
ab

le
s

in
a

li
n

ea
r

p
ro

gr
am

4.
16

.3
gr

am
sc

h
m

id
t

T
h

is
fu

n
ct

io
n

is
on

e
of

14
b

u
il

t-
in

m
at

ri
x

fa
ct

or
iz

at
io

n
s.

4.
16

.3
h

er
m

it
e

fo
rm

T
h

is
fu

n
ct

io
n

is
on

e
of

14
b

u
il

t-
in

m
at

ri
x

fa
ct

or
iz

at
io

n
s.

4.
16

.3
h

es
se

n
b

er
g

fo
rm

T
h

is
fu

n
ct

io
n

is
on

e
of

14
b

u
il

t-
in

m
at

ri
x

fa
ct

or
iz

at
io

n
s.

4.
11

h
ex

C
on

ve
rt

s
th

e
n
u

m
b

er
in

to
h

ex
ad

ec
im

al
4.

4.
2

id
en

ti
ty

m
at

ri
x

C
re

at
es

th
e

id
en

ti
ty

m
at

ri
x

of
si

ze
n

5.
4.

1
if

U
se

d
fo

r
cr

ea
ti

n
g

’i
f-

th
en

’
st

at
em

en
ts

C
im

p
li

ci
t

m
u

lt
ip

li
ca

ti
on

A
ll

ow
s

y
ou

to
u

se
5
x
+
6
y

in
p

la
ce

of
th

e
u

su
al

5
*
x
+
6
*
y

3.
4

im
p

li
ci

t
p

lo
t

T
ak

es
a

fu
n

ct
io

n
w

it
h

tw
o

va
ri

ab
le

s
an

d
p

lo
ts

th
e

gr
ap

h
f

(x
,y

)
=

0
5.

7.
3

in
R

et
u

rn
s

tr
u

e
or

fa
ls

e,
to

te
st

if
an

el
em

en
t

is
in

a
gi

ve
n

se
t,

or
n

ot
.

4.
11

in
t

R
ou

n
d

s
d

ow
n

to
th

e
n

ea
re

st
in

te
ge

r
1.

12
in

te
gr

al
T

ak
es

th
e

in
te

gr
al

b
y

sp
ec

if
y
in

g
th

e
fu

n
ct

io
n

in
te

rm
s

p
re

d
efi

n
ed

va
ri

a
b

le
(s

)
1.

12
in

te
gr

at
e

A
sy

n
on

y
m

fo
r

in
te

gr
al

4.
4.

4
in

v
er

se
C

om
p

u
te

s
th

e
in

ve
rs

e
of

a
p

re
d

efi
n

ed
m

at
ri

x
4.

23
.3

in
v
er

se
la

p
la

ce
C

al
cu

la
te

s
th

e
in

ve
rs

e
L

ap
la

ce
tr

an
sf

or
m

4.
6

is
p

ri
m

e
T

es
t

th
e

n
u

m
b

er
fo

r
p

ri
m

al
it

y
4
.1

6.
3

jo
rd

an
fo

rm
T

h
is

fu
n

ct
io

n
is

on
e

of
14

b
u

il
t-

in
m

at
ri

x
fa

ct
or

iz
at

io
n

s.
4.

23
.1

la
p

la
ce

C
al

cu
la

te
s

th
e

L
ap

la
ce

tr
an

sf
or

m
4.

15
la

te
x

R
et

u
rn

s
th

e
so

lu
ti

on
w

ri
tt

en
in

LA
T
E
X

2
.4

.3
lc

m
F

in
d

s
th

e
le

as
t

co
m

m
on

m
u

lt
ip

le
of

tw
o

n
u

m
b

er
s

(S
ee

al
so

4.
6.

1)
4.

6.
1

lc
m

F
in

d
s

th
e

le
as

t
co

m
m

on
m

u
lt

ip
le

of
tw

o
n
u

m
b

er
s

(S
ee

al
so

2.
4.

3)

4.
4.

5
le

ft
ke

rn
el

C
om

p
u

te
s

th
e

se
t

of
ve

ct
or

s
n

su
ch

th
at
~n
A

=
~ 0

,
fo

r
a

m
at

ri
x

A

4.
4.

5
le

ft
n
u

ll
it

y
C

om
p

u
te

s
th

e
d

im
en

si
on

of
th

e
se

t
of

ve
ct

or
s

n
su

ch
th

at
~n
A

=
~ 0

,
fo

r
a

m
at

ri
x

A
.

4.
6.

4
le

n
R

et
u

rn
s

th
e

le
n

gt
h

of
an

y
li

st

338 F. INDEX OF COMMANDS BY NAME AND BY SECTION

5.
7.

10
lh

s
G

iv
en

an
eq

u
at

io
n

,
th

is
re

tu
rn

s
th

e
”l

ef
t

h
an

d
si

d
e”

of
th

at
eq

u
at

io
n

a
s

a
n

ex
p

re
ss

io
n

4.
8

li
m

it
U

se
d

to
ta

ke
th

e
li

m
it

of
a

fu
n

ct
io

n
4.

7.
2

li
st

R
et

u
rn

s
a

li
st

of
w

h
at

is
b

ei
n

g
as

ke
d

1.
2

lo
g

C
om

p
u

te
s

an
y

lo
ga

ri
th

m
,

b
u

t
ta

ke
s

th
e

n
at

u
ra

l
lo

ga
ri

th
m

b
y

d
ef

au
lt

4.
16

.3
L

U
T

h
is

fu
n

ct
io

n
is

on
e

of
14

b
u

il
t-

in
m

at
ri

x
fa

ct
or

iz
at

io
n

s.
1.

5.
3

m
at

ri
x

U
se

d
to

d
efi

n
e

a
m

at
ri

x
,

gi
ve

n
th

e
n
u

m
b

er
of

ro
w

s,
n
u

m
b

er
of

co
lu

m
n

s,
a
n

d
it

s
en

tr
ie

s
4.

7
m

ax
R

et
u

rn
s

th
e

la
rg

es
t

n
u

m
b

er
in

th
e

li
st

4.
7

m
in

R
et

u
rn

s
th

e
sm

al
le

st
n
u

m
b

er
in

th
e

li
st

4.
18

.1
m

in
im

iz
e

F
in

d
s

th
e

m
in

im
a

of
a

fu
n

ct
io

n
4.

16
.2

m
in

p
ol

y
C

al
cu

la
te

s
th

e
m

in
im

u
m

p
ol

y
n

om
ia

l
4.

21
.1

M
ix

ed
In

te
ge

rL
in

ea
rP

ro
gr

am
U

se
d

to
in

it
ia

li
ze

ei
th

er
a

li
n

ea
r

p
ro

gr
am

or
m

ix
ed

in
te

ge
r

li
n

ea
r

p
ro

gr
a
m

2.
6.

2
m

o
d

T
ak

e
m

o
d

u
la

r
re

d
u

ct
io

n
on

ly
of

th
e

n
ea

re
st

n
u

m
b

er
(S

ee
al

so
4.

6.
6)

4.
6.

6
m

o
d

T
ak

e
m

o
d

u
la

r
re

d
u

ct
io

n
on

ly
of

th
e

n
ea

re
st

n
u

m
b

er
(S

ee
al

so
2.

6.
2)

1.
2

N
R

et
u

rn
s

a
d

ec
im

al
ap

p
ro

x
im

at
io

n
4.

21
.1

n
ew

va
ri

ab
le

U
se

d
to

cr
ea

te
an

in
fi

n
it

e
se

t
of

va
ri

ab
le

s
in

a
li

n
ea

r
p

ro
gr

am
4.

6
n

ex
t

p
ri

m
e

F
in

d
s

th
e

n
ex

t
p

ri
m

e
n
u

m
b

er
gr

ea
te

r
th

an
n

3
.7

.2
n

or
m

C
om

p
u

te
s

th
e

n
or

m
(o

r
le

n
gt

h
)

of
a

v
ec

to
r

4.
6.

2
n
th

p
ri

m
e

U
se

d
to

fi
n

d
th

e
n

th
p

ri
m

e
n
u

m
b

er
3
.9

.2
n
th

ro
ot

A
m

et
h

o
d

of
fi

n
d

in
g

th
e

n
th

re
al

ro
ot

(s
ee

S
ec

ti
on

3.
9.

2)
1.

2
n
u

m
er

ic
al

ap
p

ro
x

R
et

u
rn

s
a

re
al

n
u

m
b

er
,

if
p

os
si

b
le

.
L

on
gh

an
d

fo
r

th
e

co
m

m
an

d
”n

”
1.

12
n
u

m
er

ic
al

in
te

gr
al

C
al

cu
la

te
s

th
e

in
te

gr
al

n
u

m
er

ic
al

ly
,

ou
tp

u
tt

in
g

th
e

b
es

t
gu

es
s

fi
rs

t
an

d
th

e
u

n
ce

rt
ai

n
ty

se
co

n
d

4
.1

1
o
ct

C
on

ve
rt

s
th

e
n
u

m
b

er
in

to
o
ct

al
5
.7

.5
or

C
om

p
ar

es
tw

o
lo

gi
c

st
at

em
en

ts
to

ch
ec

k
if

ei
th

er
-o

r
st

at
em

en
ts

ar
e

tr
u

e
3.

6
p

ar
am

et
ri

c
p

lo
t

T
ak

es
tw

o
or

th
re

e
fu

n
ct

io
n

s
an

d
p

lo
ts

a
p

ar
am

et
ri

c
cu

rv
e

F. INDEX OF COMMANDS BY NAME AND BY SECTION 339

1.
12

p
ar

ti
al

fr
ac

ti
on

C
om

p
u

te
s

th
e

p
ar

ti
al

fr
ac

ti
on

s
of

a
co

m
p

li
ca

te
d

ra
ti

on
al

fu
n

ct
io

n
4.

7.
2

P
er

m
u

ta
ti

on
s

T
h

e
in

p
u

t
is

a
li

st
of

it
em

s;
th

e
ou

tp
u

t
is

a
li

st
of

al
l

p
os

si
b

le
p

er
m

u
ta

ti
o
n

s
of

th
at

li
st

.
1.

4
p

lo
t

P
lo

ts
a

gi
ve

n
si

n
gl

e-
va

ri
ab

le
fu

n
ct

io
n

in
th

e
co

or
d

in
at

e
p

la
n

e
3.

8
p

lo
t

lo
gl

og
P

lo
ts

a
gi

ve
n

si
n

gl
e-

va
ri

ab
le

fu
n

ct
io

n
in

th
e

co
or

d
in

at
e

p
la

n
e

w
it

h
lo

ga
ri

th
-

m
ic

sc
al

es
4.

22
.3

p
lo

t
sl

op
e

fi
el

d
G

en
er

at
es

a
sl

op
e

fi
el

d
p

lo
t

of
th

e
d

es
ir

ed
fu

n
ct

io
n

3.
7

p
lo

t
ve

ct
or

fi
el

d
T

ak
es

tw
o

fu
n

ct
io

n
s

w
it

h
tw

o
d

iff
er

en
t

va
ri

ab
le

s
an

d
p

lo
ts

ve
ct

or
ar

ro
w

s
3.

7.
1

p
lo

t3
d

C
re

at
es

a
3D

p
lo

t
of

a
tw

o-
va

ri
ab

le
fu

n
ct

io
n

1.
4

p
oi

n
t

U
se

d
to

id
en

ti
fy

/m
ar

k
a

si
n

gl
e

p
oi

n
t

in
a

p
lo

t,
b
y

m
ak

in
g

a
la

rg
e

d
ot

th
er

e
3.

3
p

ol
ar

p
lo

t
U

se
d

to
gr

ap
h

a
fu

n
ct

io
n

w
it

h
p

ol
ar

co
or

d
in

at
es

4.
6

p
ri

m
e

ra
n

ge
R

et
u

rn
s

al
l

of
th

e
p

ri
m

e
n
u

m
b

er
s

b
et

w
ee

n
th

e
d

es
ir

ed
ra

n
ge

1.
5.

4
p

ri
n
t

U
se

d
to

p
ri

n
t

in
fo

rm
at

io
n

to
th

e
sc

re
en

fo
r

th
e

u
se

r
5.

7.
3

p
ro

d
M

u
lt

ip
li

es
al

l
of

th
e

el
em

en
ts

in
th

e
li

st
4.

16
.3

Q
R

T
h

is
fu

n
ct

io
n

is
on

e
of

14
b

u
il

t-
in

m
at

ri
x

fa
ct

or
iz

at
io

n
s.

5.
5.

1
ra

is
e

U
se

d
to

ca
u

se
an

ex
ce

p
ti

on
w

h
en

d
ea

li
n
g

w
it

h
er

ro
rs

5.
1.

1
ra

n
ge

U
se

d
as

a
sh

or
tc

u
t

fo
r

m
ak

in
g

a
li

st
of

n
u

m
b

er
s

4.
16

.3
ra

ti
on

al
fo

rm
T

h
is

fu
n

ct
io

n
is

on
e

of
14

b
u

il
t-

in
m

at
ri

x
fa

ct
or

iz
at

io
n

s.
3.

9.
2

re
al

n
th

ro
ot

[C
u

rr
en

tl
y

p
ro

p
os

ed
b

u
t

d
o
es

n
ot

y
et

ex
is

t]
C

om
p

u
te

s
th

e
re

al
n
th

ro
o
t

o
f

a
n
u

m
b

er
5.

7.
3

re
m

ov
e

R
em

ov
es

an
it

em
fr

om
th

e
li

st
4.

21
.2

re
m

ov
e

co
n

st
ra

in
t

U
se

d
to

re
m

ov
e

a
co

n
st

ra
in

t
fr

om
a

li
n

ea
r

p
ro

gr
am

5.
3.

6
re

tu
rn

R
et

u
rn

s
w

h
at

is
b

ei
n

g
as

ke
d

5.
7.

10
rh

s
G

iv
en

an
eq

u
at

io
n

,
th

is
re

tu
rn

s
th

e
”r

ig
h
t

h
an

d
si

d
e”

of
th

at
eq

u
at

io
n

a
s

a
n

ex
p

re
ss

io
n

4.
4.

5
ri

gh
t

ke
rn

al
C

om
p

u
te

s
th

e
se

t
of

ve
ct

or
s

n
su

ch
th

at
A
~n

=
~ 0

,
fo

r
a

m
at

ri
x

A

340 F. INDEX OF COMMANDS BY NAME AND BY SECTION

4.
4.

5
ri

gh
t

n
u

ll
it

y
C

om
p

u
te

s
th

e
d

im
en

si
on

of
th

e
se

t
of

ve
ct

or
s

n
su

ch
th

at
A
~n

=
~ 0

,
fo

r
a

m
at

ri
x

A
.

1.
5.

3
rr

ef
C

om
p

u
te

s
th

e
”r

ed
u

ce
d

ro
w

ec
h

el
on

fo
rm

”
of

th
e

gi
v
en

m
at

ri
x

5.
5.

1
R

u
n
ti

m
eE

rr
or

U
se

d
to

sp
ec

if
y

if
th

er
e

is
an

er
ro

r
w

h
en

u
si

n
g

th
e

su
b

ro
u

ti
n
e

3.
8

sc
at

te
r

p
lo

t
P

lo
ts

al
l

of
th

e
p

re
d

efi
n
ed

d
at

a
p

oi
n
ts

on
to

a
gr

ap
h

(s
ee

S
ec

ti
on

4.
9

al
so

)
4.

9
sc

at
te

r
p

lo
t

P
lo

ts
al

l
of

th
e

p
re

d
efi

n
ed

d
at

a
p

oi
n
ts

on
to

a
gr

ap
h

(s
ee

S
ec

ti
on

4.
9

al
so

)
1.

10
se

ar
ch

d
o
c

S
ea

rc
h

es
S

ag
e

fo
r

al
l

of
th

e
d

o
cu

m
en

ta
ti

on
st

ri
n

gs
re

ga
rd

in
g

th
e

sp
ec

ifi
ed

co
m

m
an

d
1
.3

se
c

C
al

ls
th

e
tr

ig
on

om
et

ri
c

fu
n

ct
io

n
”s

ec
an

t”
in

ra
d

ia
n

s
4.

7.
5

se
ch

C
al

ls
th

e
h
y
p

er
b

ol
ic

tr
ig

on
om

et
ri

c
fu

n
ct

io
n

of
se

ca
n
t

in
ra

d
ia

n
s

6.
5

se
le

ct
or

C
re

at
es

a
sm

al
l

p
u

ll
-d

ow
n

m
en

u
in

an
in

te
ra

ct
iv

e
w

eb
p

ag
e,

th
at

a
u

se
r

ca
n

ch
o
os

e
an

it
em

fr
om

4.
21

.1
se

t
ob

je
ct

iv
e

U
se

d
to

se
t

th
e

ob
je

ct
iv

e
to

a
li

n
ea

r
p

ro
gr

am
1.

4.
2

sh
ow

U
se

d
w

h
en

su
p

er
im

p
os

in
g

a
la

rg
e

n
u

m
b

er
of

p
lo

ts
on

to
p

of
on

e
an

ot
h

er
5.

7.
3

sh
u

ffl
e

R
an

d
om

iz
es

al
l

of
th

e
el

em
en

ts
in

th
e

li
st

4.
6.

4
si

gm
a

R
et

u
rn

s
th

e
su

m
of

th
e

p
os

it
iv

e
in

te
ge

rs
w

h
ic

h
d

iv
id

e
th

e
gi

ve
n

p
os

it
iv

e
in

te
ge

r
3.

9.
2

si
gn

R
et

u
rn

s
ei

th
er

a
n

eg
at

iv
e

or
p

os
it

iv
e

1
d

ep
en

d
in

g
on

if
x

is
n

eg
at

iv
e

o
r

p
os

it
iv

e,
re

sp
ec

ti
ve

ly
1.

3
si

n
C

al
ls

th
e

tr
ig

on
om

et
ri

c
fu

n
ct

io
n

”s
in

e”
in

ra
d

ia
n
s

4.
7.

3
si

n
h

C
al

ls
th

e
h
y
p

er
b

ol
ic

tr
ig

on
om

et
ri

c
fu

n
ct

io
n

of
si

n
e

in
ra

d
ia

n
s

6.
1

sl
id

er
C

re
at

es
a

sl
id

er
fo

r
a

su
b

ro
u
ti

n
e’

s
in

p
u

t
in

an
in

te
ra

ct
iv

e
w

eb
p
ag

e
4.

16
.3

sm
it

h
fo

rm
T

h
is

fu
n

ct
io

n
is

on
e

of
14

b
u

il
t-

in
m

at
ri

x
fa

ct
or

iz
at

io
n

s.
1.

8.
1

so
lv

e
R

et
u

rn
s

a
sy

m
b

ol
ic

so
lu

ti
on

to
an

eq
u

at
io

n
or

sy
st

em
of

eq
u

at
io

n
s

4.
4.

3
so

lv
e

le
ft

S
ol

ve
s

th
e

m
at

ri
x
-v

ec
to

r
p
ro

b
le

m
~x
A

=
~ b

w
h

er
e
~x

is
u

n
k
n

ow
n

.

4.
4.

3
so

lv
e

ri
gh

t
S

ol
ve

s
th

e
m

at
ri

x
-v

ec
to

r
p

ro
b

le
m
A
~x

=
~ b

w
h

er
e
~x

is
u

n
k
n

ow
n

.
1
.2

sq
rt

C
om

p
u

te
s

th
e

sq
u

ar
e

ro
ot

F. INDEX OF COMMANDS BY NAME AND BY SECTION 341

4.
12

su
d

ok
u

F
in

d
s

a
so

lu
ti

on
to

th
e

su
d

ok
u

p
u

zz
le

4.
19

su
m

U
se

d
to

ta
ke

th
e

su
m

m
at

io
n

of
an

ex
p

re
ss

io
n

(fi
rs

t
sh

ow
n

in
3.

5.
1)

3.
5.

1
su

m
U

se
d

to
ta

ke
th

e
su

m
m

at
io

n
of

an
ex

p
re

ss
io

n
(p

ro
p

er
ly

sh
ow

n
in

4.
19

)
4.

16
.3

sy
m

p
le

ct
ic

fo
rm

T
h

is
fu

n
ct

io
n

is
on

e
of

14
b

u
il

t-
in

m
at

ri
x

fa
ct

or
iz

at
io

n
s.

1.
3

ta
n

C
al

ls
th

e
tr

ig
on

om
et

ri
c

fu
n

ct
io

n
”t

an
ge

n
t”

in
ra

d
ia

n
s

4.
7.

5
ta

n
h

C
al

ls
th

e
h
y
p

er
b

ol
ic

tr
ig

on
om

et
ri

c
fu

n
ct

io
n

of
ta

n
ge

n
t

in
ra

d
ia

n
s

4.
17

.1
ta

y
lo

r
C

al
cu

la
te

s
th

e
T

ay
lo

r
P

ol
y
n

om
ia

l
ap

p
ro

x
im

at
io

n
of

a
fu

n
ct

io
n

3.
1.

3
te

x
t

U
se

d
to

ad
d

w
or

d
s

on
to

a
gr

ap
h

4.
13

ti
m

ei
t

T
im

es
h

ow
lo

n
g

it
ta

ke
s

S
ag

e
to

ca
lc

u
la

te
th

e
so

lu
ti

on
4.

16
.4

tr
an

sp
os

e
F

in
d

s
th

e
tr

an
sp

os
e

of
a

p
ar

ti
cu

la
r

m
at

ri
x

1.
8.

1
va

r
D

ec
la

re
s

a
n

ew
va

ri
ab

le
to

re
p

re
se

n
t

so
m

e
u

n
k
n

ow
n

q
u

an
ti

ty
3.

7.
2

v
ec

to
r

C
re

at
es

a
si

n
gl

e
m

at
h

em
at

ic
al

ve
ct

or
4.

16
.3

w
ea

k
p

op
ov

fo
rm

T
h

is
fu

n
ct

io
n

is
on

e
of

14
b

u
il

t-
in

m
at

ri
x

fa
ct

or
iz

at
io

n
s.

5.
6.

1
w

h
il

e
U

se
d

w
h

en
cr

ea
ti

n
g

a
’w

h
il

e
lo

op
’

st
at

em
en

t
4.

16
.3

zi
gz

ag
fo

rm
T

h
is

fu
n

ct
io

n
is

on
e

of
14

b
u

il
t-

in
m

at
ri

x
fa

ct
or

iz
at

io
n

s.

